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Abstract

The aim of this chapter is to supply a comprehengresentation of a new member of the family of
the modal interpretations of quantum mechanicscoAding to our modal-Hamiltonian interpretation,
the Hamiltonian of the quantum system plays a dexisole in the definition of systems and
subsystems, and in the rule that selects the ohisle)sywhose possible values become actual. WEe shal
begin with introducing the main interpretative pidates and by proving their Galilean invariance.
Then we shall argue for the physical relevancehefinterpretation. We shall also show how our
interpretation solves the quantum measurement @mobboth in the ideal and in the non-ideal
versions, and why this solution is compatible witle environment-induced decoherence approach.
Finally, we shall describe, from a philosophicaéwpoint, the quantum ontology implied by the
interpretation.

* This work is fully collaborative: the order of thames does not mean priority.
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1.- Introduction

The problem of the interpretation of quantum meatgis certainly one of the most discussed topics
in the foundations of physics. More than a hundreakrs after the birth of the theory, there is sl
consensus about how its main concepts have to derstood. Nevertheless, during the last decades,
the traditional instrumentalist interpretations @édegun to loose their original strength, and sdver
realist readings have been proposed. Among thacthjrspired in the works of van Fraassen (1972,
1973, 1974), modal interpretations are realist,-omltapse interpretations, according to which the
guantum state of a system describes the possitpegies of the system rather than the properiats t

it actually possesses.

Since the 1980s, several modal interpretations baea proposed (see Dieks & Vermaas 1998,
Dickson & Dieks 2008) They share central features (for a clear sumpsay Dieks 2007, Section 1),
but they differ to each other in the particulaerof actual-value ascription, that is, the ruld gelects
the properties having an actual, and not merelgiptes value. Recently, we have proposed a new
member of the modal “family”, the modal-Hamiltoniarterpretation (MHI), according to which the
Hamiltonian of the system plays a central role boththe definition of quantum systems and
subsystems and in the selection of the actual-dalp@perties (Lombardi & Castagnino 2008,
Castagnino & Lombardi 2008, Ardenghi, Castagnind-&@mbardi 2009, Lombardi, Castagnino &
Ardenghi 2010). The aim of this chapter is to dygpcomprehensive presentation of the MHI, and
for this purpose the work is organized as follows.Section 2 the main interpretative postulates ar
introduced, and in Section 3 the Galilean invargaatthe interpretation is proved. Then, in Settdo
the physical relevance of the interpretation isuacyfor by applying it to well-known models and
experimental results. In Section 5 it is shown lmw interpretation solves the quantum measurement
problem, both in the ideal and in the non-idealkiars, and in Section 6 the compatibility between
this solution and the environment-induced decolmrepproach is proved. Finally, in Section 7 the
guantum ontology implied by the interpretation éscribed from a philosophical viewpoint.

2.- Interpretative postulates

During the last decades, the research on the matieahproperties of the formal structure of quamtu
mechanics has shown a great advance: many regokspwn by the founding fathers of the theory,
have been obtained, and this work has greatly ingatrdhe understanding of the deep obstacles that
any interpretation must face. However, this irdgere the features of the formalism has led to ébrg
the physical content of the theory: in the lastesmnusually the arguments rely on mathematicaltsesu



and discussions center around the formal modelshef quantum measurement. But quantum
mechanics is @hysicaltheory that has been applied to many well-knowstesys and by means of
which an impressive amount of experimental evidemae been accounted for. Therefore, a “good”
interpretation of quantum mechanics should not date the traditional interpretational challengés o
the theory, but also show its agreement with thboolox practice of physics. In this sense, our
proposal moves away from the present trend in ubgest by placing an element with a clear physical

meaning, the Hamiltonian of the system, at thethwdahe interpretation.

2.1.- Systems and subsystems

In order to study the physical world, we have teniify the systems populating it. We can cut bt t
physical reality in many different and arbitrary yga but only when a portion of reality does not
interact with others, we have a non-arbitrary, otoye criterion to identify that portion as a syste
For this reason, we design our interpretation tmant for those pieces of reality non-interactinghw
other pieces and, so, we conceive only closed mygstes quantum systems. On this basis, and by
adopting an algebraic perspective, we define

Systems postulate (SP)A quantum systen® is represented by a pai©,H) such
that (i) O is a space of self-adjoint operators on a HillspdceH , representing the
observables of the system, (ibl OO is the time-independent Hamiltonian of the
systemS, and (jii) if p,JO" (whereO' is the dual space @ ) is the initial state of
S, it evolves according to the Schrodinger equaitioits von Neumann version.

Of course, any quantum system can be decompospdris in many ways; however, not any
decomposition will lead to parts which are, in tugnantum systems. This will be the case only when
the components’ behaviors are dynamically indepentte each other, that is, the time-evolution of
each component can be described independently ¢o rémaining ones (see Harshman &
Wickramasekara 2007). In other words, a quantustegsy can be split into subsystems when there is

no interaction among the subsystems. Then, weagpthat

Decomposition postulate (DP):A quantum system represented By(O,H ), with
initial statep, ]O", is compositewhen it can be partitioned into two quantum system
represented bys': (OY,H') and S?% (0?,H %) such that ())O = O* 0 O?, and (ii)
H=H'OI?+1'0H 2 (where I' and 12 are the identity operators in the
corresponding tensor product spaces). In this, ¢aednitial states o5' and S? are
obtained as the partial trace§ =Tr,p, andp; =Tr,p,; we say thatS* and S? are



subsystemsf the composite systeng = S' 0 S°. If the system is not composite, it is
elemental

This definition of composite system does not imghigit the initial statep, of S is the tensor
product p(l) O pé: this factored or uncorrelated state is a verycigpe&kind of state corresponding to
independent preparations of the component systeses Ballentine 1998). On the contrary, in the
general case the initial state is a correlatedntairgled statep, JO' ; nevertheless, since there is no
interaction betwee$* andS?, [H* 0121 *0H ?| =0 and, then,

exp[~iHt/ 7] = exg - iH t /7] exp- iHf t/n] (2-1)

Therefore,
pl(t) =Trp(t) =Tr, gt/ hpOéHt/ 3 - éﬁ%/ h[TEPo] éin/ ho_ iatl/ hplo '@411/ h (2-2)
pz(t) =Trp(t) =Tr, —iHt / hpoé’Ht/ 3 - éﬁ%/ h[TIjOO] e—in/ n— i t/ hpzo '@412/ h (2-3)

This means that, in spite of the correlations,shiesystemsS* and S? aredynamically independent

e

each one of them will evolve under the action ivn Hamiltonian.

It is quite clear that the decomposition of a quantsystem into subsystems is not always
possible: it may happen that there is no partitibthe wholeS such that the total Hamiltonian can be
expressed as a sum of component Hamiltonians. h®wdntrary, a composite system can always be
defined on the basis of the component systems:

Composition postulate (CP): Given two quantum systems represented by
St (OYH%Y and S? (0?,H ?), with initial statespy O andps 0O? respectively,

a quantum system represented &1y(O,H) with initial statep, JO"' can always be
defined, such that: ({0 =00 O?, (i) H =H'OI1?+I1*0H ?+H,, 00, where
H,, is calledinteraction Hamiltonianand (iii) p, = p§ 0 p5 00" .

In this case, the initial staig, of S and the initial statepy of S* andp; of S? are still related by a
partial trace, since

Py =Trpe =Trp50 pY) p§ =Thpo =Try(pb0 pf) (2-4)
However, when the two systen®' and S? interact to each other, thet,, # 0 and, thereforepy
and p3 do not evolve unitarily according to the Schrédingquation. This means that, strictly
speaking,S* and S? are not subsystems & but should be considered as mere “parts’Safwe
describe this situation aS= S'+ S*. Only in the particular case that,, =0, S' and S* will
evolve unitarily as in egs. (2-2) and (2-3), anelthill properly be subsystems 8= S' 0 <.



2.2.- Actualization Rule

As it is well known, the Kochen-Specker theorem ¢ken & Specker 1967) is an insurmountable
barrier to any classical-like interpretation of gttan mechanics: it shows the contextuality of the
theory by proving the impossibility of ascribingtaal values to all the observables of a quantum
system in a non-contradictory manner. Therefang,raalist, non-collapse interpretation is comnglitte
to select a preferred context, which defines theeolables that will acquire actual values. Thimpo

is so relevant that Bub (1997) classifies the kasivn realist non-collapse interpretations in teohs
the observableR chosen to define the preferred context in eachobrtkem. For instance, in Bohr’s
complementarity interpretation (Bohr 1948}, is defined by the experimental arrangement; in the
interpretation of Bohm (1952)R is simply the position observable; for some madgdrpretations
(Kochen 1985, Dieks 1988, Vermaas & Dieks 1999)is given by the biorthonormal decomposition
(Schmidt) theorem. When the many interpretatidnguantum mechanics proposed through the years
are reviewed from this general viewpoint, it is yede realize that the Hamiltonian has been
systematically ignored in the discussions. Iniaterpretation, on the contrary, the Hamiltoniartrod
system will be decisive in the definition of theefarred context.

Let us recall that quantum mechanics is a prolsiulitheory: by contrast with classical
mechanics, it does not ascribe actual values toliservables of the system, but only probabilitees
each possible value (see Dieks 2007). Moreovemigum mechanics is intrinsically probabilistic: any
attempt to ascribe actual values to all the obddegaof the system, in such a way that probalslitie
interpreted in terms of ignorance about an undeglyilassical-like state, runs into contradictionaas
consequence of the Kochen-Specker theorem (seeddud#89). This means that the rule of actual-
value ascription, which selects the preferred odnt&nnot be inferred from the formalism, but bas
be introduced as an interpretative postulate. &tbhes, the adequacy of such a rule has to be &skess
in the light of its physical relevance and its @pito solve the interpretational problems of thedry.

Since we have defined a quantum system as a ckyséelm, its energy is constant in time and,
then, the HamiltonianH is time-independentH is always invariant under time-displacement.
Nevertheless, in a given quantum systéimmay have other symmetries or not. To say that the

Hamiltonian is symmetric or invariant under a certaontinuous transformation means that
°He™ =H, then [H,K]=0 (2-5)

where s is the parameter of the transformation afdis the corresponding generator. This means
that, whenH is invariant under a certain transformation, tlemegyator of that transformation is a
constant of motion: each symmetry df defines a conserved quantity. For instance, thariance of



H under space-displacement in the directeonmplies that the componer, of the momentunP
is a constant of motion; the invariance ldf under space-rotation about an arisimplies that the
component], of the total angular momentuth is a constant of motion.

Moreover, we know that each symmetry of the Hamitio leads to an energy degeneracy. In
fact, if H is invariant under a symmetry transformation vgémeratorK , we can write,

KH[n)=Kw|n = H K|n) =y, K|n) (2-6)

This means that any vectdt|n) obtained by applying the operatstr to the eigenvecton) is also
an eigenvector oH with the same eigenvalug,. If H is expressed all = znwn P,, whereP, is
the eigenprojector corresponding to the eigenvalgye we can write explicitly the index,

corresponding to the degeneracyuwgf in such a way that

Hin k)= nk) = H=an%|n,kn><n,lsl (2-7)
Klnk)=xk[nk) = K=Z%Kknln'kn><n,&l (2-8)

The degeneracies with origin in symmetries areedalinormal” (Tinkham 1964) or “systematic”
(Cohen-Tannoudji, Diu & Lalée 1977). On the contralegeneracies that have no obvious origin in
symmetries are called “accidental”. However, deegpedy usually shows either that the accidental
degeneracy is not exact, or else that a hidden ®trgnin the Hamiltonian can be found which
explains the degeneracy. For this reason it isnasd that, once all the symmetries of the Hamiétoni
have been considered, a basis for the Hilbert spatee system is obtained and the “good quantum
numbers” are well defined.

Now we have all the conceptual elements necessgmesent our rule of actual-value ascription.
We shall call it ‘Actualization Rule’ because ittise interpretative postulate that defines, amdhg a
the observables of the system, which of them aecgatual, and not merely possible, values. The
basic idea can be expressed by the classical haxim “Ubi lex non distinguit, nec nos distinguere
debemus where the law does not distinguish, neither dugé to distinguish. The Hamiltonian of the
system, with its symmetries, is what rules actadilin; then, none observable whose eigenvalues
would distinguish among eigenvectors of a singlgeterate eigenvalue of the Hamiltonian has to
acquire an actual value, since that value wouldchice in the system an asymmetry not contained in
the Hamiltonian. Once this basic idea has beearlglainderstood, the Actualization Rule can be
easily formulated.

Actualization Rule (AR): Given an elemental quantum system represented by
S:(O,H), if H=0, there is no actualization, but iH #0, the actual-valued



observables ofS are H and all the observables commuting with and having, at
least, the same symmetriedas

Let us see how the rule works in different cases:
(&) The HamiltonianH does not have symmetries; this means that itnsdegenerate. In this case,
H|n)=0y,|n) with w, # @, (2-9)

Where{|n>} is a basis of the Hilbert spa¢e¢. Therefore,n is the only good quantum number:
the actual-valued observables of the systemtarand all the observables commuting with

(b) The HamiltonianH has certain symmetries that lead to energy degewyein this case,H can
be written as

Hini) = |ni) = H=>w>|ni)ni|=> wP, (2-10)
n in n
where w, # w, and the index, expresses the degeneracy of the energy eigenwalueLet us
consider an observable of the form

A=§an|n,in><n, in|=;ani2|nin><n, in|=;anpn (2-11)

where a, #a, It is clear thafH,A]=0. Moreover, A has the same degeneracy Hssince

they have the same eigenprojectds the subspace spanned by the degenerate eigersvecto

corresponding taa, is the same as that spanned by the degenerateveajers corresponding to
@,. In other words,A has the same symmetries &s. Therefore, all the observables
commuting withH and having the form of eq. (2-11) are actual-valu®©n the contrary, e.g.,
observables of the form

B=2 0, [ni){nil (2-12)
in spite of commuting wittH , do not acqtr;il;e actual values, since the actuaizaf a particular
eigenvalue ofB would discriminate among the degenerate eigenv@ctrresponding to a single
degenerate eigenvalug, of H and, in this way, it would introduce in the systamasymmetry
not contained in the Hamiltonian.

(c) An interesting particular case arises when all thgenvaluesw, have the same-fold
degeneracy: the indeix, that expresses the energy degeneracy, is natcidn of n. Then, in
this case eq. (2-10) becomes

H|n,i) =, |n,i) (2-13)

As a consequence, the Hamiltonian can be decompassed

H :Zn:%zi:|n’i><n’i| =Zn:oon|n><n| O Z| yi|=H""O1° (2-14)



This equation expresses the decomposition of tiginat systemS into two non-interacting

subsystem&™® andS®:

OThe systemS™° is represented in the Hilbert spacé'™H with basis{|n)} , and its Hamiltonian
H NP is non-degenerate.

OThe systemS® is represented in the Hilbert spadé’ , with basis{|i)}, and its Hamiltonian is
H®=0.

Therefore, the original systef is a composite syste® = S"° 0 S° such that

H=HYOH® , H=H"OIP+I"°OHP+H, =H N OI® (2-15)

where H® =H,, =0. As a consequence, the Actualization Rule habetcapplied to each

elemental subsystem:

On S™° the preferred basis i§n)}: the actual-valued observables ake"® and all the
observables belongingto™ O " and commuting witiH P

On SP there is no actualization becausé’ =0: the observables o8 do not acquire actual
values.

As we have said, Bub (1997) classifies the real@st-collapse interpretations in terms of the
observableR by means of which the preferred context is defiladparticular, each interpretation
selects a sublatticd (|e> ,R) of the complete lattice of quantum propositiond)ere |e> is the
instantaneous state of the system: in this subdattiruth values can be assigned and standard
Kolmogorov probabilities can be defined. But sinae general, the sublattice depends on the
instantaneous state), it changes with time. This means that the setatfial-valued observables is
different at each time as the instantaneous sfatbeosystem evolves dynamically. This result not
only defies intuitions (a system having, say, posibut not momentum dat, and momentum but not
position at an infinitesimal time later), but aleads to the need of accounting for the dynamics of
actual properties (Dieks & Vermaas 1998, Baccigygaild Dickson 1999). In our interpretation, on
the contrary, this step is unnecessary becausaythamics of actual properties is trivial. In fagifjce
in any case the actual-valued observables commithetire Hamiltonian, they are constants of motion
of the system: in spite of the fact that probaletiitare continuously evolving, the set of actudl:ed
observables is time-independent and, thus, conpletbust. This supplies a more intuitive pictafe
the behavior of a quantum system: actualizatioruxgconly once, with the constitution of the system
as such, and since then the actual-valued propatethe same at any time, up to the time when the
system “disappears” as that particular system Igracting with another system. This picture is
consistent with the well-known fact that, if theeegy of a quantum system is completely definitagti



is completely indefinite; therefore, the searctaafefinite time when actualization occurs in a eths
constant-energy system is senseless.

3.- Interpretation and Galilean group

Although it is usual to read that non-relativistjgantum mechanics is invariant under the Galilean
transformations, this issue has been scarcelyetteiat the standard literature on the theory (see th
complaint by Lévi-Leblond 1974). This fact has désunterpart in the field of the interpretation of

guantum mechanics: the relevance of the Galileangrs rarely discussed in the impressive amount
of literature on the subject. However, the reladlip between interpretation and Galilean

transformations deserves to be seriously analy#tesl:fact that the theory is invariant under the
Galilean group does not guarantee the same progdertythe interpretation since, in general,

interpretations add interpretative postulates #oftiimal structure of the theory.

3.1.- The Galilean group

The space-time symmetry group of non-relativistitassical or quantummechanics is the Galilean
group, defined by ten symmetry generatéts, with a =1 to 10: one time displacemeri,, three
space-displacementspi, three space-rotationKei, and three boost-velocity componerifg , with

i =X,Y,z. The Galilean group is a Lie group with its asated Galilean algebra of generators. The
central extension of the Galilean algebra is ole@ias a semi-direct product between the Galilean
algebra and the algebra generated by a centrafjehahich in this case denotes the mass operator
M =ml, wherel is the identity operator anah is the mass (see Weinberg,1995, Bose 1995).idn th
central extension, when there are not externatidieicting on the system, the symmetry generators
represent the basic magnitudes of the theory: tieegy H = 7K, , the three momentum components
P =nK, , the three angular momentum componedfs-7K, , and the three boost components
G =7K, . The rest of the physical magnitudes can be defineterms of these basic ones: for
instance, the three position components &e= G /m, the three orbital angular momentum
components arel; =g, Q;R (where g, is the Levi-Civita tensor, such thatzk, j#Kk,

Eik =€ =&; =1, & =€ =&; =—1), and the three spin components &e= J - L. In order to
simplify the presentation, from now on we shall @lse expression ‘Galilean group’ and ‘Galilean
algebra’ to refer to the corresponding central esiten, and we shall takie=1.

The Galilean group is defined by the commutatidatiens between its generators:

@ §R.R]=0 0 56,7 ]=i5 M
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(b) §G.G, |=0 (@ pr.H]=0

© 53.9; |= g k (h) B3, .H]=0
(d) BJ.R]=iex R i) §G.H]=R
(e) BJi G |= e G (3-1)

Moreover, each Galilean transformati®p acts on observables and states as
(- -1 \ —
0-0 ‘U%OU% |¢>—’|¢>‘Usa|¢> (3-2)
where s, is the parameter corresponding to the transfoonafj,, and Us, is the family of unitary

operators describing, . Since in any cass, is a continuous parameter, ea.(tg can be expressed in
terms of the corresponding symmetry generdtgras

— AKeSy
U, =ekes (3-3)

The combined action of all the transformationsiverg by
10
Ug, =[]e“" (3-4)
=1
When the state vector is represented as a funofispace-time coordinates, there is an inverse

relation between transformations on function spawktransformations on coordinates (see Ballentine
1998):

O(x,H)=Us0(x',t") (3-5)

In the case of time-displacement, the transformait® the transformatioréx,to) - (x,t0+r) is
& - t,+1 andU, is U, =€"", where the Hamiltoniamd is the generator of the transformation and
T is the corresponding continuous parameter:

|9(t))=€""[d(t+1)) (3-6)
Then, by making, =0 andt =t, we obtain
0(t)=€""|0(0)) (3-7)

This equation, which has the form of a solutiontled Schréodinger equation, can be obtained only
when H is independent of and, as a consequence, it is the generator ofdispdacements. This
means that the Schrodinger equation has the physeaning of describing time-displacements only
for time-independent Hamiltonians, that is, forsed systems. On the other hamht,may have the
remaining space-time symmetries or not. As we ls@en, to say that the Hamiltonian is symmetric
or invariant under a certain continuous transforoma, means tha{H ,Ka] =0 and, thereforeK,

is a constant of motion of the system (see eq))2-5
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3.2.- The invariance of the Schrodinger equation

As we have seen, when there are no external fagtisg on the system, the Galilean group is defined
by the commutation relations (3-1). Now we cansider how the Galilean transformations affect the
Schrédinger equation,

d|¢)

~ =7Ho) (3-8)

Let us premultiply both members of the equationlby €®: by using the propertyyU ™ =1 and,
then, addingdU / dt)| ) to both members, we obtain

d(|¢)) . du, .\ _ ..o d]d) du
U—OIt +E|¢>_ iUHU ]UTJrEm (3-9)
Therefore,
d(U]o)) . L. du,
—( o )=—|[UHU 1+|Eu 1}u|¢> (3-10)
If we recall the action of the Galilean transforioas on states and observables (see egs. (3-Zanve
write
d¢)_ .[ ., .du _1} , ]
Liae {H S0 g) (3-11)

In a closed, constant-energy system free from eatdields, H is time-independent and tHe
and the J, are constants of motion (see eqs. (3-1g,h)). Tlien time-displacements, space-
displacements and space-rotatiods] / dt= dé** /dt=0, where K and s stand forH and T, P
andp,, andJ; and®©;, respectively. As a consequence, eq. (3-11) yield

di¢' L
A9~ g (3-12)

Moreover, for those transformationd,’ = H because:

> Time-displacements: H' =€""He™" = H since[H,H] =0
> Space-displacementsH' =€ He™® = H since[P,H] =0 (relation (3-1g))
» Space-rotations: H'=e”®He % = H since[J;,H] =0 (relation (3-1h))

By applying these results to eq. (3-12), we prdwe invariance of the Schrdodinger equation under
time-displacements, space-displacements and sptat@ns when there are no external fields acting
on the system:
de) _ 67) (3-13)
dt
The case of boost-transformations is different fittwa previous cases, because the Hamiltonian

is not boost-invariant even when the system is fire@ external fields (for the same claim in claasi
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mechanics, see Butterfield 2007). In fact, undé&oast-transformation corresponding to a velocity
u,, H changes as

H'=e%%He" % £ H since[G, ,H]=iP, #0 (relation (3-1i)) (3-14)
and the generatds, is
G, =mQ=n{ Q-+ \}= m@+ P (3-15)

SinceG, is not time-independentU / dt= dé>* /dtz 0, and eq. (3-11) yields
' .GXUX .
dle9 -i (H'+i ge ™ e"GxuxJ

dt

i o) (3-16)

In order to know the value of the bracket in thes.. side of eq. (3-16), we have to compute both
terms in the bracket. By using the Hadamard lenapplied to the Baker-Campbell-Hausdorff
formula, e®Ae®= Ar[ B A+(1/2!) H B H+(1/3!)[ B B BH]+---, and by applying the
commutation relations (3-1i) and (3-1Hl' results

H' :etiux He—tiUx = H- Ll( B_{_% Ml‘i = H+ -E (3'17)

whereTy is the boost contribution to the energy. In tuoypmeans of the lemma and the commutation

relation (3-1f),R," results
P' =% pe%%= P- My = P= P P (3-18)

where P, =(-Mu, 0,0) is the boost contribution to the momentum. Imnfuvhen there are no

external fields, the Hamiltonian can be writtertanms of the internal enerdy as

P2
=—+W (3-19)
2m
By means of egs. (3-18) and (3-19), it is easyhowsthat the transformed Hamiltonian can be

expressed as
(P+R)"

2m

On the other hand, we have to compute the timesalive dé®* / dt of eq. (3-16). By using the
identity e*® = e* 8’2 which holds when[ A[A B[]=[ B[ A§]=0, and by applying the
commutation relatiOIﬁPi F Q }): —i0F dQ valid on the Galilean algebra, it can be proved th

de>

dt

When the results (3-17) and (3-21) are introducéal €q. (3-16), the terms addedhbin H' cancel
with those coming from the term containing the tidegivative; so, we prove the invariance of the

H' = +W (3-20)

=i (uXPX —% Muﬁj o (3-21)

Schrédinger equation also for boost-transformations
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dlo) _ . ., ]
- iH|¢") (3-22)

Summing up, when there are no external fields gaiimthe system, the Hamiltonian is invariant
under time-displacements, space-displacements agmacesgotations, but not under boost-
transformations. In spite of this fact, the Sclimgdr equation is completely invariant under the
Galilean group, and this conceptually means thatstate vectof¢> does not “see” the effect of the
transformations: the evolutions fiff) and|¢') are identical. In other words, the time-behawibthe

system is independent of the reference frame umdtié description.

3.3.- The invariance of the modal-Hamiltonian imtestation

Let us recall the physical meaning of a symmetapdformation. A continuous transformation, as in
the case of the Galilean group, admits two integbi@ns. Under the active interpretation, the
transformation corresponds to a change from onesyso anothertransformee system; under the
passive interpretation, the transformation congmstschange of the viewpoirteference framefrom
which the system is described (see Brading & ClastieP007). Nevertheless, in both cases the
validity of a group of symmetry transformations eegses the fact that the identity and the behafior
the system are not altered by the application ef titansformations: in the active interpretation
language, the original and the transformed systamesequivalent; in the passive interpretation
language, the original and the transformed referdéraomes are equivalent.

In the case of the Galilean group, and adoptingptssive interpretation language, the validity
of the group amounts to the equivalence betweeararte frames time-displaced, space-displaced or
space-rotated with respect to each other, and leetweertial reference frames: the application of a
Galilean transformation does not introduce a modifon in the physical situation, but only expresse
a change of the perspective from which the systemescribed. It is quite clear that any adequate
interpretation of quantum mechanics should not at@lthis physical meaning of the Galilean
transformations. In particular, if a realist irgestation determines the preferred context thacsel
the actual-valued observables of the system, suchomtext should not change under the
transformations of the group: from a realist viempoit would be unacceptable that the set of detua
valued observables were different as the meretresal change in the reference frame from which the
system is described (Brown, Suarez & Bacciagald®pB). Therefore, one is entitled to ask whether
the MHI satisfies this constraint.

As we have seen, the preferred context selectethddynodal-Hamiltonian Actualization Rule

only depends on the Hamiltonian of the system. nThe first sight, the requirement of invariance of
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the preferred context under the Galilean transftiona would amount to the requirement of
invariance for the Hamiltonian. It is easy to seat this requirement is fulfilled in the case ofhé-
displacement, space-displacement and space-rataiioce the Hamiltonian is invariant under those
transformations. However, it is not clear that teguirement of invariance of the preferred context
completely holds, since the Hamiltonian is not nvat under boost-transformations. This seems to
lead to the conclusion that the preferred contebdcted when the system is described in the referen
frame RF is different that the preferred context selectedhe boost-transformed reference frame
RF': the set of actual-valued observables would changeifferent inertial frames, and this fact
would make an objective feature of the system tpedd on the particular descriptive viewpoint
adopted. Of course, this conclusion would be usgiable on physical grounds. Nevertheless, the
seeming conflict can be solved when the MHI is atgred as a whole.

For simplicity, let us consider a systeth described in the reference frankd, at rest with
respect of the center of mass®f in such a way that its Hamiltonian i$,. In RF, the momentum

R, of the system is zero and, as a consequence,
2

P
PR=0 = Hy=—"2+W=W 3-23
g 07 0 (3-23)
Let us now consider the systeB described in a reference frani®F in motion with a constant
velocity u, with respect toRF,. T he new HamiltoniarH, is (see eq. (3-17))

H1:H0+TB:W+% MU (3-24)

This means that, ifRF, H; is the sum of two terms: a Hamiltonidh, =W relative to the center of
mass of the system, and a Hamiltonldp =T, representing the total kinetic energy of tranefati In
turn, sinceH, =W does not depend on the position nor on the momewfuthe center of mass, but
only on the differences of positions and their ee$ppe conjugate momenta, and, =T; only
depends on the boost-velocity, we can guarant&dt—l}aHK] =0. If H? is the Hilbert space of the
wavefunctions of the differences of coordinates &Hd is the Hilbert space of the wavefunctions of
the coordinates of the center of mass, thigrcan be expressed as

H,=H,+H,=HROI"+10OH ] (3-25)

where HY is the internal energy Hamiltonian acting on thiébéft spaceH®?, HY is the kinetic
Hamiltonian acting on the Hilbert spadé”, and I? and |7 are the identity operators on the
respective spaces. But, according to the modal-Hamen definition of elemental and composite
system DP, eq. (3-25) expresses the fact $has a composite system, whose elemental subsystems
are:
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> a systemS,, defined by the Hamiltoniatd relative to the center of mass, which represeres t
internal energy W.

> asystemS, , defined by the Hamiltoniak, representing the translational kinetic energy.

In turn, the modal-Hamiltonian Actualization Rulgpies to elemental quantum systems. This means
that, according to the MHI, both elemental systeBsand S, , “actualize” independently:

> In S,, the HamiltonianH3 (or H, =W) determines the set of actual-valued observabiBish is

the same set selected by the Actualization Ruleameference fram&F, .

> In S, the HamiltonianH;? (or H, =Tg) acquires an actual value and, with it, the taiaktic

energy of translatiog also turns out to be actual-valued.

This shows that, by contrast to what originally goged, in the context of the MHI a boost-
transformation does not modify the preferred conitea way that violates the physical meaning ef th

transformation. The only change resulting fromspas from an inertial frame to another consists in
the appearance of an elemental sys&m non-interacting withS,, where the kinetic energy acquires

an actual value (we shall come back to this poirBubsection 7.4).

3.4.- Actualization Rule and Casimir operators

We have shown that, when the system is free fromereal fields, a boost-transformation only
introduces a change in the subsystem that catrekihetic energy of translation: the internal gyer
remains unaltered under the transformation. Thaukl not sound surprising to the extent that the
internal energy is a Casimir operator of #oentral extension of theGalilean group.

A Casimir operator of a Lie group is an operatat tbommutes with all the generators of the
group and, therefore, is invariant under all trensformations of the group (see Tung 1985). The
Galilean group has three Casimir operators: thesrasratorM , the operatorS?, and the internal
energy operatofV = H- P? /2m. The eigenvalues of the Casimir operators label itreducible
representations of the group (see Wigner 1939, Bang1954, Lévi-Leblond 1963). So, in each
irreducible representation, the Casimir operatoesmaultiples of the identityM =ml, wherem is
the massS® = g st1) |, wheres is the eigenvalue of the spl®, andW = wl, wherew is the scalar

internal energy

We have also pointed out that, under the passitezpretation, the application of a Galilean
transformation expresses a change in the perspeittm which the system is described. Then, any
realist interpretation should agree with this pbgkifact: the rule of actual-value ascription skioul
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select a set of actual-valued observables thatinsmenaltered under the transformations. Since the
Casimir operators of the Galilean group are invdrinder all the transformations of the group, one
can reasonably expect that those Casimir operbtdang to the set of the actual-valued observables.
Then, the Actualization Rule can be reformulatetbfisws:

Actualization Rule’ (AR’): Given a quantum system free from external fieldd a
represented byS: (O,H), its actual-valued observables are the observaBles
represented by the Casimir operators of the Galilgeoup in the corresponding
irreducible representation, and all the observabtesmuting with theC, and having,

at least, the same symmetries asGhe

Since the Casimir operators of the Galilean graeph., S* andW , this reformulation of the rule is
in agreement with the original AR when applied ®yatem free from external fields:

» The actual-valuedness dfl and S® postulated by AR’ follows from AR: these obsenezbl
commute withH and do not break its symmetries because, in nativistic quantum mechanics,
both are multiples of the identity in any irredueilbepresentation. The fact thist and S? always
acquire actual values is completely natural frorphgsical viewpoint, since mass and spin are

properties supposed to be always possessed byuamyugn system and measurable in any physical
situation.

» The actual-valuedness aV might seem to be in conflict with AR becau¥¢ is not the
Hamiltonian: whereadV is Galilean-invariantH changes under the action of a boost. However,
as we have seen, this is not a real obstacle wieealemental subsystems to which AR applies are
considered.

In addition to supplying an explicitly invariant rggon of the rule of actual-value assignment,
AR’ leads us to a final reflection. The identitgdathe behavior of any quantum system free from
external fields must remain unchanged under thieractf the Galilean group. On the other hand,
from a realist viewpoint, the fact that certain @hysbles acquire an actual value is an objectigeifa
the behavior of the system; therefore, the set atfigkvalued observables selected by a realist
interpretation must be also Galilean-invariant. t Bue Galilean-invariant observables are always
functions of the Casimir operators of the Galilegnoup. As a consequence, one is led to the
conclusion that any realist interpretation thaemis to preserve the objectivity of actualizatioaym
not stand very far from our MHI.

Summing up, the modal-Hamiltonian Actualization &uatirrors the Galilean-invariance of the
Schrodinger equation: when the Schrodinger equasidnvariant—no external fields acting on the
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system, the rule is also invariant when expressed in seointhe Casimir operators of the Galilean
group. This last conclusion opens up a promisiagy mesearch path. In non-relativistic quantum
mechanics, the external fields acting on a systemat quantized, and this fact is what breaks down
the harmony of the free case: the Schrdodinger emudobses its Galilean invariance, and the
Hamiltonian is no longer the generator of time-thspments in the Galilean group. In quantum field
theory (QFT), on the contrary, fields are quantuems and not “external” fields affecting the
behavior of the quantum system. As a consequéneayenerators of the Poincaré group do not need
to be reinterpreted in the presence of “externattdrs, and the dynamical laws are always Poincareé-
invariant. These features of QFT make us to censichether the Actualization Rule, expressed in
terms of the Casimir operators of the Galilean grounon-relativistic quantum mechanics, can be
transferred to QFT by changing accordingly the swtmyngroup: the actual-valued observables of a
system in QFT would be those represented by tha@ragperators of the Poincaré group, and the
observables commuting with them and having, att|éhe same symmetries. Sinb& and S* are

the only Casimir operators of the Poincaré grotpytwould always be actual-valued observables.
This conclusion would stand in agreement with aaugahysical assumption in QFT: elemental
particles always have actual values of mass anmg apid those values are precisely what define the
different kinds of elemental particles of the theor

4.- The physical relevance of the interpretation

As pointed out, during the last decades the disonsson the interpretation of quantum mechanics
were based on the formal properties of the matheatatructure of the theory, and the traditional
interpretative problems were analyzed from thisspective. But quantum mechanics is a physical
theory and, as a consequence, a “good” interpoetatif quantum mechanics should show its
agreement with the orthodox practice of physics. this section we shall argue for the physical
relevance of our MHI by applying it to very well-dwwn models and experimental results.

4.1.- Free pointlike particle

The Hamiltonian of the free particle reads
2 P2 + P2+ PZ
= P_ =X ¥y 'z (4-1)
2m 2m
where P is the momentum observable, with compone?ts}, ,F,, andm is the mass of the particle.
The particle is said to be “free” because therenarefields acting on it: then, space is homogeseou

and, as a consequenchH, is invariant under space-displacements in anyctime (an analogous
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argument could be given in terms of the isotropysplce). The componen® P, ,B are the
generators of the symmetry and, at the same tiorestants of motion of the system. Therefore, the

Hamiltonian is degenerate.

According to our Actualization RuleH acquires an actual value, and alB since it is
proportional toH and, then, has the same space-displacement syynfiRétris the Casimir operator
of the group generated by, ,R, ,B). NeverthelessP, ,R, ,F, are not actual-valued because, being the
generators of the symmetry, the actualization gf@frtheir eigenvalues would break the symmetry of
the free particle, in the sense of introducing synmametry non contained in the Hamiltonian.

Of course, the three componen® can be used for the theoretical description of fiiee
particle; in fact, usually any two of them are adide H to constitute a complete set of commuting
observables (CSCO{,H ,PX,Py} : {H P, ,PZ} or {H,R,,R}, that defines a basis of the Hilbert space
(given the functional dependence among the four nitagdes, the CSCO[ PP, ,F;} can be
equivalently used). But this fact does not meat those observables have to be considered actual-
valued. On the contrary, the application of our IM#él this system agrees with the empirical non-
accessibility to the values d?,,R, ,F, in the free particle. If we wanted to know thesdues, we
would have to perform a measurement on the partidBait a measurement always involves an
interaction with the measured object, which brethlessymmetry of the original system by modifying
its Hamiltonian (for instance, consider a screetingcas a potential barrier that breaks the
homogeneity of space). This means that, under uneaent, the particle is no longer free: the
symmetry breaking introduced by the interactionhvilie measuring apparatus is what allows us to

have empirical access to an observable that waestry generator of the original free system.

4.2.- Free particle with spin

The spin S is an internal contribution to the total angulaomentum and, therefore, adds further
degrees of freedom to the particle: the Hilbertcepa nowH = Hg [0 H,, whereHg is the Hilbert

space of the free particle amt], is the Hilbert space of the spin. In this cabBe,Hamiltonian is

_P?
H —%+EO 4-2)

where E, can only be a multiple 08> and, then, may be conceived as an internal carioi to the
energy (see Ballentine 1989).

According to our interpretation, in this case thgstem is composite, because it can be
decomposed into two non-interacting subsystems t{seanterpretative postulate DP): a free particle

without spin, represented iH, and with HamiltonianH ; = P? /2m, and a spin system, represented
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in Hg and with HamiltonianH, =k S*, with k =const Then, the Actualization Rule has to be
applied independently to each elemental subsystem.

The rule applies to the free particle subsysteraxggained in the previous subsection. On the
other hand, in the spin subsysteld,, is invariant under space-rotation: the generatdrghis
symmetry are the three componerts,J, ,J, of the total angular momentud. But since in this
case the orbital angular momentumis zero, the total angular momentuin= L+ S turns out to be
simply J =S, and the three componeng ,S, ,$ of the spinS are the generators of the space-
rotation symmetry. Analogously to the case offtiee particle, according to our Actualization Rule,
in this caseH acquires an actual value, and aBosince it is proportional tad (S? is the Casimir
operator of the group generated 8y,S, ,3); neverthelesss, ,S ,$ are not actual-valued since they
are the generators of the symmetry of the Ham#tom ( = k g

Again, this conclusion agrees with the fact that /e no empirical access to the spin
components of the free particle with spin. If wanivto know the value of those components, we have
to perform a measurement on the system: we hawdrtmuce a magnetic fiel® of modulusB in
some direction, say, which breaks the isotropy of space and, as aecp@ce, the original space-
rotation symmetry. Under the action Bf, the HamiltonianH, is not invariant under space-rotation
anymore, because now it includes the interacttigBS, that privileges a particular direction of space.
In other words, we can have experimental acceshdospin component, only by means of a
measurement that breaks the space-rotation symroéttige original Hamiltonian and, therefore,
makes the system no longer free. This is the usaglin which a spin component is measured in a

Stern-Gerlach experiment (we shall analyze thissmesment in detail in Subsection 5.3).

4.3.- Harmonic oscillator

In general, an harmonic oscillator is an objectet#d by a quadratic potential energy, which preduc
a restoring force against displacement from equilib that is proportional to the displacement.
Under a usual description, a quantum harmonic lasailis a system of two bodies interacting through
a potential quadratic in the relative displaceméltie Hamiltonian of the system reads

L —Q) :
“om T om, K(Q-Q) (4-3)

where k measures the strength of the interaction. Now aredefine the coordinates of the center of
mass and the relative coordinates,

_mQ+mQ A i
QC_W R=Q-Q (4-4)
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: . R-mB
PoEMQ =R B R=pQe il (4-5)

where M =m, + m, is the total mass, anfl=mm, /( m+ m) is the reduced mass. In this new
coordinate system, the Hamiltonian can be writen a

2 2
H=tc Ry kQ3 (4-6)
2M  2u
Then,H can be expressed as the sum of two teths,H, + H, , such that

2 2 2
Ho=w=H--¢ =% q H =Tt
oM~ 2u 2M

It is quite clear thatH, and H, commute, sinceH, only depends on the relative coordinates and

(4-7)

H, only depends on the coordinates of the centerasfsm Therefore, the total Hamiltonian can be
written as (for notation simplicity, from now on ve@all ignore the difference betweét, and H

and betweerH, and H_3 as introduced in Subsection 3.3)
[Ho.Hc]=0 = H=H,OI"+1°0H, (4-8)

In this case it is easy to see thdt is the Hamiltonian of a composite systed, whose
subsystemsS, with HamiltonianH, and S, with HamiltonianH, do not interact with each other;
thus, they “actualize” independently. This medrat H, (internal energy) acquires an actual value in
S,, and H, (kinetic energy) acquires an actual valueSip. In the systents,, the HamiltonianH

can be expressed in terms of the dimensionlessignqosind momentum operatorg = (2k /hQ)l/2 Q;
and p= (1/;175(2)1/2 P,, whereQ is the frequency of oscillation,
PZ 1
Ho=W=-"+kQ==mQ( p+ 4-9
0 =W =2t k=3 (F+d) (4-9)
In turn, if the observable number of modés= a'a is used,
. . 1
N=a'a= MJ(C'“'DJ —~ H :hQ(N +—j 4-10
( NG 0 > (4-10)
As it is well known, in this case the spectratbfand N can be obtained algebraically:
Ho|n) = e, |n) (4-11)
N|n)=nn (4-12)

In fact, sinceH, has no symmetries, it is non-degenerate: the C$8¢} defines a basis of the
Hilbert space of the system. According to our Adization Rule,H, acquires an actual value and,
due to its non-degeneracy, the preferred conteadt ithdefines corresponds to the baﬁis}}: any
observable commuting witlH, (that is, whose eigenvectors are vectors{|oi}}) Is also actual-
valued. In particular, the number of particldsacquires an actual value sir{dﬁé, HO] =0.
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The harmonic oscillator has a central relevancguantum mechanics because it provides a
model for may kinds of vibrating systems. In pariée, the electromagnetic field can be decomposed
in terms of linearly independent modes, each onehoth behaves as an harmonic oscillator usually
associated to a patrticle; in this ca®e, is conceived as the observable number of parti@as the
point to stress here is that, in all of those ibg@phenomena, the energy of the system is tleyaat
physical magnitude, whose values are experimendaitessible, and our Actualization Rule accounts

for this fact.

4.4.- Free hydrogen atom

The hydrogen atom is conceived as a two-body systensisting of an electron and a proton
interacting with each other through a Coulombiateptal. In this case, the Hamiltonian reads
_ Pe2 N pp2 _ e
2me 2mp ‘Qe_Qp‘
where the subindexes and p refer to the electron and the proton respectivatyl e is the electric

(4-13)

charge of the electron. As usual, if we take theter of mass coordinates and the relative coaiekna
as independent variables, we obtain egs. (4-4) 4%, with the indexe® and p instead ofL and 2
respectively. Then, in the new coordinates, ti@ tdamiltonian results

2 2
H :i.}.i_i (4_14)
2M 21 |Qg|
where we can identiffH, andH, as
2 2
HO:W:H—i:i—i HK:;"C2 (4-15)
2M 21 |Qy 2M
Here it is also clear that
[HoH]=0 = H=H,OIP+1°0H, (4-16)

Again, the hydrogen atom is a composite systemdiatbe analyzed into a subsyst&y defined by
the internal energ\H, =W, and a subsyster8, , defined by the kinetic energyl,, . And, according
to the modal-Hamiltonian Actualization Rule, botlbsystems “actualize” independently.

The usual strategy for solving the energy eigenvalgeation consists in taking the reference
fame at rest with respect to the center of masthefsystem, in such a way thBf = H, =0 and
H=H,=W. As itis well known, when the resulting equatisnwritten in spherical coordinates
(r,e,cp), its solution can be expressed as the productvofftinctions, one only dependent on the
radial coordinate and the other only dependenthenangular coordinatest’(r,8,¢) = R(r)Y (6 ) .

By solving the radial and the angular equationsgdh‘good” quantum numbers are obtained: the
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principal quantum numben, the orbital angular momentum quantum numbeand the magnetic
quantum numbem . These quantum numbers correspond to the eigeewalf the observablad ,
L and L, respectively, whereL is the orbital angular momentum, ardg, L,, L, are its

components:
Hin,l,m)=a,|n1,m) (4-17)
L*[n,1,m) = 1(1 +1)2%|n I, m) (4-18)
L |n,1,m)=ma|n |, m) (4-19)
with n=0,1,2,.., I <n,and-I <m <|I. In particular, the energy eigenvalues are coegpas
4
___He
= 4-20
W=7 7 (4-20)

Therefore, the hydrogen atom is described in teointhe basis{|n,I,m)} defined by the CSCO

{H ,L2,|7}: the quantum numbers, |, and m label the solutions¥ ., of the energy eigenvalue

nim
equation.

In this case, the Hamiltonian is degenerate duks gpace-rotation invariance. When the spin of
the electron is not considered (for the effectha $pin, see below, Subsection 4.6), the total langu
momentumJ =L+ S is simply J=L. Then, the three components, L, L, of L are the
generators of the symmetry group, akfdis the Casimir operator of the group. As a consege,
althoughl , andm are good quantum numbers in the sense of collabgra the definition of a basis
of the Hilbert space, the eigenvalues of the Hamiltonian do not depend on them: duehi® t
symmetry ofH , the values of.?> and L, have no manifestations in the energy spectrumcosting
to our Actualization Rule, as the result of the efegyacy ofH , the observables® and L, do not
acquire actual values: the only actual-valued ofzddes of the system ard and the observables
having, at least, the same space-rotation symni&tigast, the same degeneracyHas

The fact that our MHI does not confer actual valdesl® and L, should agree with
experimental evidence, in particular, with the detaning from spectroscopy. Let us consider each
observable in detail:

a) In quantum chemistry, the statey,, of the atom (orbitals) are labeled Xsx, where X is the
principal quantum numban, anda is replaced withs, p, d, f, etc., that is, with letters corresponding
to the value of the angular momentum quantum nurhbés: 2s, 2p, 3s, 3p, 3d, etc. As we can
see, the magnetic quantum numberis not included in those labels because, althddigh depends
on the three quantum numbers, the space-rotatinmsyry of the Hamiltonian makes the selection of
L, a completely arbitrary decision: since space dgrapic, we can choosé, or L, to obtain an
equally legitimate description of the free atomheTarbitrariness in the selection of thalirection is
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manifested in spectroscopy by the fact that thetsplelines give no experimental evidence about the
values ofL,: we have no empirical access to the nunmoer Our interpretation, that does not assign
an actual value td.,, agrees with those experimental results. Analslyoto the case of the free
particle with spin (Subsection 4.2), if we wantkoow the value ofL,, we have to introduce a
magnetic field that breaks the isotropy of space ghall describe this situation in detail in thetne

subsection).

b) On the contrary, the value of the quantum nunmbisrincluded in the traditional orbitals’ labels as
S, p, d, etc. Moreover, the value df can be inferred from the observed energy spectfithe
hydrogen atom, and it plays a role in the explamabf the well-known spectral series (Lyman,
Balmer, Paschen, etc.). These facts might bepretsd as a symptom of the actual-valuedness of
in the free hydrogen atom. However, the manifestadf the value ofl requires the interaction
between the atom and an electromagnetic field. uBual explanation runs as follows. Since energy
transitions involve the absorption or emission opleton (spinl), conservation of the angular
momentum forces the atom to experience a chandeiwfts orbital angular momenturh. For this
reason, when a photon is absorbed by an atom is arbital, the atom acquires orbital momentum
and makes a transition to orbital; when absorbed by an atom irpaorbital, the orbital momentum
increases p — d transition) or decrease® (-~ s transition), depending on the relative orientadioh
the photon and the atom angular momenta. Butit@nss — d or p - f are forbidden. From this
explanation, it is clear that the manifestatioringf value ofl is the result of an interaction; but, then,
the system is not the free hydrogen atom anymohe new system has a Hamiltonian of the form

H=H_,+H,,+H, (4-21)

where H_, is the Hamiltonian of the free hydrogen atom (sge(4-13)), andH,,, is the Hamiltonian
of the electromagnetic field, which can be compusdhe infinite sum of the Hamiltonians of the
independent harmonic oscillators correspondinch&imfinite modes of the field (see eq. (4-5)). In
turn, H,,, is the interaction Hamiltonian, that depends adipole moment of the atom and on the
electric field (see Ballentine 1998, pp. 548-54%he interaction breaks the original symmetrylin
and, as a consequence, removes the energy degemerde quantum number: now the energy
eigenvaluesw,, turn out to be functions of both the quantum nursbe and|. This fact is what
leads to the manifestation of the value lofin the energy spectrum, and alloi$ to become an

actual-valued observable in the new, non-free ayste

The fact thatl? is not an actual-valued observable in the frgdrogenatom does not mean that
it never acquires an actual value in a free atdime particular features of the hydrogen atom sisong

depend on the Coulombian potential, conceived a®rgéed by its one-proton nucleus. In more
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complex atoms, the potential in not perfectly Conibean, and this asymmetry removes the
degeneracy in of the Hamiltonian: the energy eigenvaluas are functions of botm and| with no
need of interaction (see Ballentine 1998, p. 28This means that?® does no longer discriminate
among the different eigenvectors corresponding single degenerate energy eigenvalue, but rather
removes the degeneracy of the symmetric Coulomdage. According to our Actualization Rule, this
implies thatL? is an actual-valued observable for free atoms wnith-Coulombian potential.

4.5.- Zeeman effect

When an external magnetic field is applied to ttema the spectral lines split into multiple closely
spaced lines. First observed by Pieter ZeemaB36,lthis phenomenon is known as Zeeman effect.

In the previous subsection we have seen that,reitthe Coulombian or in the non-Coulombian
potential case, the Hamiltonian is endowed withpacs-rotation symmetry that makes the energy
eigenvalues to be independent of the magnetic gganumberm , that is, to be degeneratenn. It
is precisely due to this symmetry that the selectibL, for completing the basis of the Hilbert space
is the result of an arbitrary decision. The aaritress of choosing the-direction agrees with the fact
that there is no experimental evidence about theewaf m in the energy spectrum.

In the case of the Zeeman effect, the magnetid betaks the isotropy of space. In this case, the
general Lagrangian of the system of two particbese (proton and one electron) in a magnetic field is

1 ., 1 . : :
L=omQ+-mQ+ pADQ-| A (| & ¢ (4-22)
where Ql(C§l‘) Is the position (velocity) of the proto@z(@) Is the position (velocity) of the electron,

and A is the vector potential depending only on the dowtes. The opposite signs of the third and
fourth terms in (4.22) comes from the opposite sighthe charges of the proton and the electron.

Now we introduce the same change of coordinates tee case of the harmonic oscillator (see
egs. (4-4) and (4-5)). Then, the Lagrangian reads

1
L=§M(§§+”kﬂ”5§;+|e}AEQ—v(| Ql) (4-23)
where M =m + m,. In order to obtain the Hamiltonian descriptiortioé system, we have to compute

the momenta of the coordinates by means of thaitefis P. =dL /0& and P, =dL B&. Then,
the HamiltonianH = P-Q. + P,Q;-L reads

P(:2 M 2
M (e ga) +v(a) (@20
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If the magnetic field is uniform, the vector pote@htan be written ag\ = (1/ 2) QrxB. Then,P;[A
can be computed as

PRDA:—% P:[{ P;x B) =—% QgX F>REB=——:2L LB (4-25)
Therefore, the Hamiltonian can be written as
TP +V(|Qd)-EeL —E(Q xB)" (4-26)
2M  2u RV TR
where p =m, and pg =en /2u is the Bohr magneton. In this Hamiltonian we cammiediately
identify two commuting Hamiltoniansl; and H,
H —P_F§+v(|Q |)_b L[B_E(Q ><B)2 H - R (4-27)
R 2u R 7 a1 R 7 oM
in such a way that the internal energy of the casitpsystem is
P2 M ? 2
W=H-H.= HR=2—E+V(|QR|)—7B LEB—%(QRXB) (4-28)

In this case, in spite of the action of the extefiedd, the total systen® is composite: the subsystem
Sc, with Hamiltonian H., carries the total kinetic energy of translatithe Hamiltonian of the
subsystemS; is the internal energyV = H,, and the set of actual-valued observablesSgfis
independent of the kinetic energy and, therefereaiiant under boost-transformations. In gendinal,
term (|e|2 /8|1)(QR x B)2 = (| ¢2 /2;1) A? is neglected, and the Hamiltonian is written @& (Ballentine
1998, p. 325; Cohen-Tannoudji, Diu & Lal6ée 1977835)

H = 2P|\j| aj +V(|Qi))-Ee LB (4-29)

Again, when the system is described in the referdraame at rest with respect to the center of
mass,P. =H. =0 andH =Hy =W:

_ PF? - Hg
H= +v (|QR|) LB =H, -~ LB (4-30)

This means that the magnetic flela along the z-axis breaks the isotropy of space and, as a
consequence, the space-rotation symmetry of theiltdaunan. In turn, the breaking of the symmetry
removes the energy degeneracynit now L, is not arbitrarily chosen but selected by thedios of
the magnetic field. As a consequence, the origiegkeneracy of th(aZI + 1) -fold multiplet of fixedn
and! is now removed: the energy levels turn out toispldced by an amount

JAE _|28|—r:eli m, (4-31)
This means that the Hamiltonian, with elgenvalw% , IS now non-degenerate: it constitutes by
itself the CSCQ[H} that defines the preferred bagjs, |,m)}. According to our Actualization Rule,
in this caseH and all the observables commuting wih are actual-valued: since this is the case for
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L* and L,, both observables acquire actual values in agneewith the experimental evidence of the
Zeeman effect.

4.6.- Fine structure

When the spectral lines of the hydrogen atom cpamrding ton>1 are examined at a very high
resolution, they are found to be closely spacedbbis. This splitting was one of the first
experimental evidences of the electron spin. Pphisnomenon is usually explained by saying that the
energy levels of the atom are affected by the autéwn between the electron sp8 and the orbital
angular momentunk. . Now the Hamiltonian of the system reads

H=H,+H +H (4-32)
at S S-0

where H_, is again the Hamiltonian of the free hydrogen atdtg =k §° is the Hamiltonian of the
spin, andH __, is the Hamiltonian representing the spin-orbiérattion, function of the produdt[5.

When the spin-orbit interaction is neglecteld (,=0), the system is composite and can be
described in terms of the basfén,l,m,sm)=|nlmO| s )}, where thes(s+1)n*> are the
eigenvalues of8?, and themy: are the eigenvalues &,. But when the spin-orbit interaction is taken
into account, the observablds and S, no longer commute witiH and, therefore, they are not
constants of motion of the system: it is usuallglghat m and m, are not good quantum numbers
anymore. Nevertheless, the Hamiltonian is stMamant under space-rotation: the componehts
J,, J, of the total angular momentumd are the generators of the symmetry group, ands the
Casimir operator of the group, with eigenvalugg +1)4*. In turn, J is the sum of the orbital
angular momentunt. and the spin angular momentusn

J=L+S m, =m+mn (4-33)

wherem; corresponds to the eigenvaluebf. So, nowm, is a good quantum number. But we also
know that
J2 _ L2 _ SZ

32=(L+s)?’ = L= (4-34)

Therefore,H_, is a function ofJ?, L? and S?, and the corresponding quantum numbpgrd ands
are also good quantum numbers. As a consequercejgbnvalues of the total Hamiltonian have the
general form

Whjjs = Wy + E(nl)[j (i+2)-1( +D)-s(s+ ])] (4-35)
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where thew,, represent the energy eigenvalues with no spirt-odaipling, and, is a function ofnl
(see Tinkham 1964, pp. 181-183). Then, the lesid;, j,s,m; >} of the Hilbert space of the system is
defined by the CSC({)H 17,3287, JZ} , where

H{nl,j.s,m) =y | nlj.s,m) (4-36)
'—z\n,l,l,s,m>=l(l+1)v‘a \n,l,an]> (4-37)
It js.m)= j(j+ D% nljs.m) (4-38)
S(nljsm)=¢s1% nljsp (4-39)
I lsm)=mp[nl s m) (4-40)

It is quite clear that the spin-orbit coupling reres the original degeneracy of the eigenvalues
w, of the atom with no coupling. Therefore, in thisse our Actualization Rule seledt$, J* and
S? as actual-valued observables, because all of twenmute withH and have the same degeneracy
in m; as H. But the space-rotation symmetry still preserthin system leads to a degeneracyHof
manifested by the fact that the energy eigenvatygs do not depend om;. Then, according to our
Actualization Rule, although in this casg is a good quantum numbef, does not acquire an actual
value, and this result agrees with the arbitrasrasthe selection of the-direction for J, .

When a magnetic field is applied to the atom, thectal lines split in different ways. The
“normal” Zeeman effect, explained in the previousdsection, is observed in sph states where,
obviously, the spin-orbit coupling has no effecin the states where the spin-orbit coupling is
effective, the action of the magnetic field produeefurther splitting of the energy levels known as
“anomalous” Zeeman effect. Nevertheless, the egtian of the anomalous effect is the same as that
of the normal effect: the action of the magnetieldialong thez-axis breaks the space-rotation
symmetry of the Hamiltonian by privileging the-direction, and this leads to the removal of the
original degeneracy of the Hamiltonian in the quamhumberm; (instead of in the quantum number
m as in the normal effect). In this case, our Atihadéion Rule prescribes thak, will be also actual-

valued.

4.7.- The Born-Oppenheimer approximation

Our Actualization Rule endows the Hamiltonian of gystem with the role of selecting the preferred
context and, therefore, the energy of the systemayad acquires an actual value. But this does not
mean that the momentum is an actual-valued obskeriralany case, since it does not always commute
with the Hamiltonian. In fact, when a system is$ affected by a vector field, its Hamiltonian has t

general form
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_P’
=SV (Q) (4-41)

When the massn of the system is small, the kinetic term prevaNgr the potential term, and the
Hamiltonian approximately commutes wiBf. In turn, for very large masses, the kinetic tean be
neglected andH approximately commutes witk' (Q). So, the modal-Hamiltonian Actualization
Rule supports the usual claim that “small” systeqpgroximately actualize in momentum and “large”
systems approximately actualize in position. s tekense, the MHI agrees with the physical
assumption that electrons have definite momentuinnbt definite position, and the nucleus has
definite position but not definite momentum. Imgeal, our rule explains the fact that macroscopic

systems, with their large masseapproximately posses a definite value of position.

This point has a particular relevance in molecalemistry, where the description of molecules
is based on the adiabatic separation of electrannaiclear motions. As it is well known, the Born-
Oppenheimer approximation conceives the nuclei lassical-like particles, that is, as precisely
localized objects. This approximation strategyolding the nucleus at rest in an actual positiam c
be thought off as formally arising from making thasses of the nuclei infinite. However, from a
strictly quantum-mechanical viewpoint, without derdior selecting the actual-valued observables of
the system, the assumption of infinite nuclear msskoes not explain yet why the nucleus can be
treated as having an actual value of position. PAmas says,We hardly understand why the Born-
Oppenheimepictureis compatible with theonceptsof quantum mechanit$Primas 1983, p. 13; see
also Woolley 1978, Amann 1992).

In fact, the total Hamiltonian of a molecule reads

Hio = To(R)+Vin(R) + T( )+ Md 9+ Ve 1.B) (4-42)
where T, is the nuclear kinetic energy (function of the leac momentaP, ), V,, is the potential due
to the interactions between the nuclei (functiontied nuclear positiondR;), T, is the electronic
kinetic energy (function of the electronic momerga), V,, is the potential due to the interactions
between the electrons (function of the electrorositons r, ), andV,,, is the potential due to the
interactions between the electrons and the nudlgicion of ther, and the R,). The Born-
Oppenheimer approximation proceeds in two steps.

a) In the first step the nuclear kinetic energpeglected, that isTn(Pa) is substracted from the total
HamiltonianH,,,. The resulting electronic Hamiltonign, reads

He =Vnn(Rx)+ Te( pl) + Vee( rD + Ver( ri’lg) (4'43)

29



where the nuclear positiorR, play the role of parameters. Therefore, the rmugtetentialV,, (R, )
is just a constant that shifts the eigenvaluesigfonly by some constant amount. Thus, the eleatroni

Schrédinger equation

HeWo(riRy) = Eo(R) We( 1 R) (4-44)
is solved, and the electronic energy eigenvalEgéR]), parametrically depending on tig,, are
obtained. This step is often referred to asdlanped nuclei approximatiorthe electron-nucleus
interactions, represented M, (r;,R,), are conceived in terms of electrons in the Coblgutential
produced by nuclei “clamped” at definite positiond'he substraction oﬂ'n(Pa) is justified by
assuming thall, [l T,, which, in turn, relies on the assumption thatribelear mass is much greater
than the electronic masd U m. In particular, ifM /m - o, thenT, (R,) - O.

b) In the second step the nuclear kinetic energgirgroduced and the total energy, is obtained by
solving the nuclear Schrédinger equation,

[T (R)*E(R)J¥a(R)= B o( B) (4-45)

It is clear that the crucial approximation of ther8-Oppenheimer strategy is introduced in the
first step, where the relatioM [1 m is approximated tdM / m — o . Of course, this limit is never
strictly true and, therefore, the results so oladiare mere approximations. But this is not thatpo
here. Let us suppose for a moment that the nuoheas were effectively infinite; according to the
usual reading of the Born-Oppenheimer approximatioihis case we could infer that the nuclei are
effectively clamped at definite positions. The sfien is why we can make this inference.

The uncritical answer relies on intuitions comimgni classical physics: a body with infinite
massM would have null kinetic energy = P /2M and, as a consequence, it would be at rest in a
definite position. However, here we are not in assical domain, but in a quantum theoretical
framework where, as it is well known, classicatinbns usually do not work.

The usual quantum answer is more adequate thgorél@us one, because it relies on quantum
concepts. Let us recall that the total Hamiltonkay, of the molecule can be expressed as (see egs.
(4-42) and (4-43))

Hot =T (R)+ He( pioER) (4-46)

where the electronic Hamiltoniad . is not a function of the nuclear momera. WhenM /m - o
and, then,T,(R,) - 0, both Hamiltonians can be considered as eqHa),=H.(p;.r,R,). As a
consequence, sindg, commutes withH,, whenM /m - « R also commutes with,,:

Hot =He(PiHoR) = [Ho.R]=0 (4-47)
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On this basis, the quantum answer reads as follsivse the molecule is in a time-independent state
(essentially an axiom of quantum chemistry), itgests an eigenvector d¢fi,,, and, as a consequence,
it has an actual value ¢l (that is, of its energy). Since the molecule &rasictual value of it#l,,,
then theR, , commuting withH,,, are also actual-valued, and this means thatubkeinare located at
actual positions.

Although seemingly reasonable, this explanatioredafor granted the actual value b, a
point that is far from being clear from a quantureetmanical viewpoint. When the quantum answer is
analyzed with care, it is not difficult to see thais implicitly based on the traditional eigertsta
eigenvalue link, according to which, when a quansystem is in a stathb>, an observableA is
actual-valued iff|<|>> Is an eigenvector ofA. Now the quantum answer turns out to be a precise
argument:

- Since the molecule is in a stationary state, @te$tV) is an eigenvector ofl,,, .

- Since |HJ> is an eigenvector oH,,, according to the eigenstate-eigenvalue lifkk, is actual-
valued.

- SinceM /m - o, then[H,,,R,| =0

- Since| W) is an eigenvector ofl,,, and[H,,,R,] =0, then|W) is an eigenvector oR, .

- Since|lP> IS an eigenvector oR,, according to the eigenstate-eigenvalue liRk,is actual-valued,

that is, the nuclei are “clamped” at definite piasis.

The problem with this argument is that the eigaestéggenvalue link does not always work as
well as one would expect: its shortcomings comthéolight already in the simplest atomic model. In
fact, in the free hydrogen atom each vet#w[ﬂm> is an eigenvector of the three observables of the
CSCO{H ,LZ,I7}. Therefore, according to the eigenstate-eigemvhhk, the three observabldd ,

L? and L, should be actual-valued. However, as we have, sherspace-rotation symmetry of the
system makes the selection of the spatial direcicm completely arbitrary decision: since space is
isotropic, we could choose a different directishto obtain an equally legitimate description of the
free atom. In other words, the CSCC{’BI,LZ,IT} and {H,LZ,I7.} supply both equally “good”
descriptions of the free hydrogen atom. Therefamgording to the eigenstate-eigenvalue link, the
observableL, should also be actual-valued. Blit,,L,]#0: two non-commuting observables
cannot have both actual values. On the other hfodge of them were selected as the actual-valued
observable, a physical fact would depend on arraridescriptive decision; but this move would be

unacceptable from a scientific viewpoint.

Our MHI provides an answer to this conceptual probl For large masses, the Hamiltonian is
—approximately invariant under boost transformation and, theesfdarapproximately commutes with
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position. As a consequence, according to the Aizateon Rule, the position observable acquires an
actual value: this provides a conceptual justifarato the Born-Oppenheimer assumption. Of course,
masses are never infinite: this is what makes tra®ppenheimer strategy an approximation and not
a precise method. But also in this sense ourpreéation agrees with the usual assumption: sinee t
Hamiltonian perfectly commutes with position ontythe infinite mass limit, only in this limit we ga
say with absolute precision that position acquanesactual value. In real situations, the actusikac
observable will generally be an observable verymilgir” to position, but which becomes
indistinguishable from position for increasing nmesss

5.- The measurement problem

In the standard von Neumann model, a quantum measumt is conceived as an interaction between a
systemS and a measuring devide. Before the interactionD is prepared in a ready-to-measure
state|r0>, eigenvector of the pointer observaliteof D, and the state 06 is a superposition of the
eigenstates]a) of an observableA of S. The interaction introduces a correlation betwésn
eigenstatesa ) of A and the eigenstat¢s) of R:

Wo)=2.cla)0[6) - [w)=2¢[la)d]r) (5-1)
| |
The problem consists in explaining why, being thetes|y) a superposition of thés,) O|r), the

pointer R acquires a definite actual value.

In the orthodox collapse interpretation, the pustegy) is assumed to “collapse” to a mixture

p° =3 la["la) 0 r)(a|O(r| (5-2)
where the probabilitie|$,|2 are given an ilgnorance interpretation. Thenhis situation it is supposed
that the measuring apparatus is in one of the egmars|r,) of R, say|r, ), and thereforeR acquires
a definite actual valug,, the eigenvalue corresponding to the eigenveetor with probability|ck|2.

In the modal interpretations, the problem is tolaixpthe definite reading of the pointer with its
associated probability, without assuming the caelapypothesis. In our MHI, the Actualization Rule
is what must accomplish this task.

5.1.- Ideal measurement

In the von Neumann model and, in general, in thexudisions about the quantum measurement
problem, the Hamiltonians involved in the process asually not taken into account. In our
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interpretation, where the Hamiltonians plays a i@mble, we have to provide a more detailed model
of the measurement process. Thus, we shall sayathp@aantum measurement is a three-stage process:
(i) during Stage | {<0), the systemS and the deviceD do not interact, (ii) during Stage Il
(0<t<t), S and D interact, and the interaction establishes theetatron, and (iii) the interaction
ends att =t;, and during Stage llitt;), S andD do not interact.

Stage |: Let us suppose that we want to obtain the coefiisi of the stat«*ips(to = O)> OH g of the
elemental quantum syste81 (Q; = Hg O Hg,H 9

95ty =0)) = Yc ) OHs 53)
where |

Ala)=a|a)00s, where{|a)} is a basis oHg (5-4)
For simplicity, we shall assume that the Hamiltontés JOg4 of S is non-degenerate:

Hs|ws) =ws|ws), wheref|w;)} is a basis oHg (5-5)

The measuring device is an elemental quantum syskEnO, = Hy O Hy ,Hy) having an
observableROO, , which has to possess different and macroscopidatinguishable eigenvalues in

order to play the role of the pointer:
Rlr)=¢|r), where{|r)} is abasis oH,, (5-6)
At time t, =0, the deviceD is prepared in a ready-to-measure shgt)e eigenvector oRR:
|Wp(to)) =[1o) OH (5-7)
For simplicity, we shall assume that the Hamiltoni&, 1O, of D is non-degenerate:
Hp |p;) = 0 [ ). where{| oy, )} is a basis oH,, (5-8)

For the reading of the pointer to be possible,dlgenvectors}n} of R have to be stationary. Thus,
D is constructed in such a way tratcommutes withH, :

[Ho.R|=0 = o) =|r) = Holr)=ay ) (5-9)
Therefore, according to the Composition postule®e & timet, =0 the state of the composite system
SO D will be

Wit =0)) =|Ws(to = 0)) D|wp) = 3 c[a) 0 p) 0O =Os 0 Oy (5-10)
i
Since during Stage | there is no interaction betw&eand D , thenH;,, =0 and the total Hamiltonian

of SOD is
H=HsOly+l ¢ OH 00 (5-11)
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Stage II: In this second, interaction stage, the systé®nsand D interact through an interaction
Hamiltonian H,,. This means that the composite syst8iii D becomes the systei§, : (O,H, ),

whose Hamiltonian reads
H,=HsUOIly+Is0OH ;+H,, =H +H,, 0O (5-12)

In turn, the statéy, (t, =0)) of SO D in Stage | turns out to be the initial stég, (t, =0)) of S in
Stage II, which evolves to a stdtp, (t,)) after aAt =t,:

W (W) =€ gy (5 =0)) = €™ |y (§ = 0)) (5-13)
It can be proved that, if the interaction HamilemH,, is
H,. = —M(AD PR) (5-14)

where \ is a constant an@®® is the observable conjugate B, [R, PR] = i, then the final state of
S, in Stage Il is (see Mittelstaedt 1998)

W) =2 cla)0]r) (5-15)
Stage Ill: At time t =t, the interaction ends: the Isyst&ién becomes the original composite system
SO D, whose Hamiltonian is agaiH =Hg O 1, +1 sOH ;00 . In turn, the stat@, () of S, in
Stage Il becomes the initial stdw,” (t1)> of SO D in Stage lll. Since in this stage and D are
again elemental quantum systems, we can apply thehzation Rule to each one of them:

(a) In the deviceD, the initial state of the third stagpy =Trs|W,, (t)){Wy, (1)|, evolves unitarily
under the action oH . Nevertheless, the preferred context is time-ilavdr sinceH, is the non-
degenerate Hamiltonian of a macroscopic system[&mi R] =0, both H, and R are actual-
valued.

(b) In the systemS, the initial state of the third stag@g(t,) =Trp| Wy, (t,)){(W, ()|, evolves
unitarily under the action oHg. However, two cases have to be distinguishedHIf, A] = 0,
then bothHg and A may have actual values. But[ifig, A] # 0, the observableA is not actual-
valued.

The fact that in certain situations the observahl®f the systemS may have no actual value turns
out to be non-problematic when we recall that thel @f a quantum system is not to “discover” the
value of the observablé, but to know the coefficients, of the systems’s statlepS}. In fact, the
coefficients can be obtained by registering thgudencies of detection of each eigenvaludRofsince

Po (t) :Trs| U (t1)> <¢'|n (t1)| = ZCiC*j |ri><rj ‘ (5-16)
i

and the probability corresponding to the eigenvaluean be computed by means of the Born rule:
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Pr(r.pp(ty) = (i |po t)r) =6 |2 (5-17)
Summing up, according to our MHI, no matter whettlex system’s observable acquires an
actual value or not, the device’s pointer is alwagtual-valued, and the frequencies of those actual
values provide us the correct coefficients of th&tesn’s state. When the initial state ®fis not pure
but mixed, ps = zij of |ai><aj ‘ this procedure will supply only the diagonal dméénts p; ; if we
want to know the remaining coefficienfy; with i #j, we have to perform further measurements
with different experimental arrangements (see Béihe 1998).

5.2.- Non-ideal measurement

Having rejected the collapse hypothesis to solve itheasurement problem, many non-collapse
interpretations were specifically designed to sypgoh alternative answer to the problem. Usually
those attempts work with no difficulties in the ead ideal measurements, but run into troubles when
faced to non-ideal measurements. This fact cabaaginored, since ideal measurement is a situation
that can never be achieved in practice: the interadetween the measured system and the measuring
device never introduces an absolutely perfect trom. In spite of this, successful measuremargs
commonly performed in real experiments. So, we amamitted to show that our MHI is able to
account for guantum measurements even in hon-gike@ltions.

Two kinds of non-ideal measurements are usuallyndigished in the literature:

* Imperfect measuremefitrst kind):

>cla)Ole) - Xd|a)0|r) where, in generat; #0 with i # | (5-18)
* Disturbing measuremem:econd kinyd

Zi:q |3)0|g) - Zq ‘ ad> Olr)  where, in genera{a,-d‘ajd> £, (5-19)

However, the disturbing measurement can also beesged as an imperfect measurement by a change
of basis:

Zi:q‘a,d>D|r>=iqu|a>D“> (5-20)

In certain modal interpretations, the rule of pmp@scription, when applied to non-ideal
measurements, leads to results that disagree modetobtained in the orthodox collapse interpratati
(see Albert & Loewer 1990, 1993). If the propestascribed by a modal interpretation are different
from those ascribed by the collapse interpretatio® question is how different they are. In theecaf
an imperfect measurement, it can be expected tratdf #0, with i#j, be small; then, the
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difference might be also small. But in the casa afisturbing measurement, tide # 0, with i # j ,
need not be small and, as a consequence, the esagnt between the properties ascribed by the
modal interpretation and those ascribed by collapgght be unacceptable (see a full discussion in
Bacciagaluppi & Hemmo 1996). This fact has beemswtered by Harvey Brown as a “silver bullet”
for killing the modal interpretations (cited in Ba@galuppi & Hemmo 1996).

We shall not distinguish between the two kinds afddeal measurements because the result of
the application of our Actualization Rule does depend on the values of the off-diagonal texips
As we shall see, according to the MHI, the obsdevabd that plays the role of the device’s pointer
acquires an actual value in any case.

Stages | to lll: In a non-ideal measurement, Stage | is charaetdiiz the same way as in the ideal
case. The difference begins at Stage Il, where dbeelation introduced by the interaction
Hamiltonian H,;,, is not perfect. Therefore, the final st{aqgl (t )> of Stage Il, which is the initial state
|y (4)) of Stage IlI, reads

W () =, (1)) = 2 d;[a) O] (5-21)
As discussed in the case of the ideal measurenvé\tare not interested in the actual-valued
observables of5 ; so, we shall analyze the result of the proceskendeviceD , which begins Stage
lll in an initial state

Po (1) =TrsN’m (t1)><Lp||| (t1)| = Z< |ljJ”| (t )> Wy (8 )|a ZpD|j| < ‘ (5-22)

n
where

Poij = zqn dr:j (5-23)
n
Although D evolves unitarily under the action &f,, the preferred context is time-invariant since it

is defined by the eigenbasis Ef, . In turn, sinceH, commutes withR, bothH, and R are actual-
valued.

Also in this case, the coefficients can be obtaibgdegistering the frequencies of detection of
each eigenvalue dR:

Pr (ri’ pD (tl)) = <ri |pD (t1)|l’ pDu anl | - h | + ZH | (5'24)

n#i
As we can see, if the coefficients; , with nz i, of the off -diagonal terms of the initial stateStage
lll are zero, we are in the ideal measurement oakere py; =|d;[* =|¢|°. If the coefficientsd,; ,

with n#i, are not zero, we are in the non-ideal measureroasd. However, in this case two
situations have to be distinguished:
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« Ifthe d,
24)). This means that, by the repetition of r5ieiatlnr.=,‘1r;tthe coefficients{c,
obtained, and the measurement willrbkable.

with n# i, are small in the sense thxf|d,|* 0 |d;|*, thenpy; O [ck [0 [¢|* (see eq. (5-
|2 can be approximately

e Ifthe d
means of the measurement will ti@n-reliable

., With n# i, are not small, thepy; [|d; | does not hold. Therefore, the result obtained by

Summing up, our MHI can account for the fact thatfgct correlation is not a necessary
condition for “good” measurements: if the relialyilcondition of small cross-terms is satisfied, the
coefficients of the system'’s state at the beginmhthe process can be approximately computed even
when the correlation is not perfect. Neverthelésdh in the reliable and in the non-reliable case,
each measurement an actual reading of the postdtained.

5.3.- The Stern-Gerlach experiment

Since the Stern-Gerlach experiment is the paradijguantum measurement, it is worth while to see
how all the elements of our general account of mm@amsent can be found in this case.

The experiment is usually described as followsneitral free particle with spin, with constant
velocity in the y-direction, passes between the poles of a magaétptioduces an inhomogeneous
magnetic fieldB, with componentsB, = B, =0 and B, = zB', where B' is the field gradient. The
particle is described in the plazg, and in a frame of reference moving uniformlyhie ty -direction,
where P, =0. The gradient of the magnetic field producesradidhat deflects the particle in ttze
direction: the deflection depends on the componé&spin in that direction.

As we have seen in Subsection 4.2, the free pamitth spin is a composite syste®[] S;. In
this measurement situation:

> the spin subsysten$,, represented irH, and with Hamiltoniaan=k52, is the system under
measuremens .

> the free particle without spiS, , represented ifd, and with HamiltonianH ; = P2 /2m, has to be
a part of a measuring devid@ such thal{HD, PZ] = 0: this guarantees that the eigenvector$pf
are stationary and, the®, can play the role of the pointer.

On this basis, at Stage | we find that:
» The observabléA is the spin inz-direction, S,JO¢= H O H
sl)=sl)  sh)=s

L) (5-25)
wheres =-s =(1/2)a.
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« The momentum ire-direction plays the role of the pointd?, 1O, = Hgy O Hg:

RlV)=pl+)  R[5)=nr|-) R0= /0 (5-26)
where{|+) |-) |0)} is a basis oH,, .

« The states o6 andD are, respectivelys) :cl‘1>+ Cz‘l> andyp, =|0). Then,
W, =0))=¢|1)0[0)+c,|+) 0|0 (5-27)
« As we have said, the Hamiltonian & is H, =k §°, and the Hamiltonian oD is such that

[Ho,R,]=0. Therefore,
Hpl#)=w|+)  Hp[)=w|-)  Hpl0)=cy|0) (5-28)

ldeal measurement: At Stage Il, the total Hamiltoniatd, =Hg+H ,+ H,,, introduces a perfect

int

correlation. Then, the initial state 8f(] D in Stage Il is

W @) =g|1)0[+)+c|1)0]-) (5-29)
The initial state of the subsysteih then reads
Pp (t2) =T 1| Wy ()Y (W (1) | =[a [ 14 ¢+ + 6, 12 (-1 (5-30)

Since[H,,P,] =0, both the HamiltoniarH, and the momentur®, in z-direction are actual-valued.
The probabilities corresponding to the possibleliregs can be computed as

Pr(+'pD(t1)) :<+|pD (t1)|+> :|C]J2 (5-31)
Pr(=pp (1)) = {-|po (t)]-) =|cj” (5-32)
Pr (0,05 () =(0lpp ¢;) 0 = 0 (5-33)

As expected, these measures are time-invariant: dbenot depend on the time when the reading of
the pointer is performed, that is, on the precisgitppn where the detectors are placed in Stagelfll
the probabilities depended on the instantaneous sfathe system, the result of the measurement
would be extremely sensitive to the precise locatb the detectors: any imperceptible perturbation
would substantially modify the frequencies so aied, making the measurement of tfuﬁz

physically unrealizable.

Non-ideal measurement:n this caseH, does not introduce a perfect correlation. Thgahstate
of SO D in Stage lll is, then,

|¢'u|>:d11‘7>D|+>+d12‘T>D|_>+ dyy l>D|"'>"' dy, l>D|_> (5-34)
The initial state of the subsysteln reads

Po (t1) = Ppual B (1 + Pp 1ol P =1+ Pp 24l =) (F] + Pp o =) (= (5-35)
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where

2
Poij = zqn dr:j (5-36)
In other words, nt
|d112 + |d2112 dy,d;,+ dydy,

Po(ty) = . (5-37)
dipdhy + dpoyy [ df +|df

Again, since[Hp, P,] =0, both the HamiltoniarH, and the momentur®, in z-direction are actual-
valued. But now the probabilities correspondinghi® possible readings are

Pr (+1pD(tl)) = <+|pD(tl)| +> = |d11J2 '*'|dzJ2 (5-38)
Pr (""pD (tl)) = <_|pD (t1)| _> = |dzz|2 + |d1212 (5-39)
Pr (+aPD(t1)) = <O|pD (t1)| O> =0 (5-40)

In this non-ideal case, the measurement will biabt if |d,|* 0 |d,{* and |d,,|" 1 |d,)*; if not, the
measurement will not supply the necessary inforomator the reconstruction of the original state of
the measured system. Nevertheless, the obserfal@equires an actual value in any case, and this is
the prediction that can be directly tested in esinfgle detection.

This analysis of the Stern-Gerlach experiment adla8 to point out a feature of the quantum
measurement that cannot be noticed in the meretyditreatments of the process. In fact, in the vo
Neumann model, the observabfe of the systenS under measurement is considered in formal terms
and deprived of its physical content. Then, therarction betweers and the measuring devid® is
endowed with the only role of introducing the ctat®n betweenA and the pointelR. However,
the varied physical situations described in Sectioshow that we have no empirical access to the
observables that are generators of the symmetfigheosystem’s Hamiltonian; in the context of
measurementA may be one of those observables. This is prgcibel case in the Stern-Gerlach
experiment, wheres, is a generator of the space-rotation symmetriAof k . ltis the interaction
with the magnetic fieldB, what breaks the isotropy of space by privilegihg z-direction and, as a
consequence, breaks the space-rotation symmetH,_ afsee Subsection 4.2). This physical account
of the measurement shows that, when the observébles a generator of a symmetry of the
HamiltonianHg of S, the interaction with the devide has to break that symmetry and, at the same
time, has to establish the correlation betweknand R. Therefore, from a physical viewpoint,
measurement can be conceived as a process thes hheasymmetries of the system to be measured
and, in this way, allows us to reconstruct itsestat terms of an otherwise empirically inaccessible
symmetry-generator observable. The idea is that fdttmal von Neumann model of quantum
measurement can be complemented by a physical mode&rms of which measurement is a
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symmetry-breaking process that renders a symmeéyergtor of the system’s Hamiltonian
empirically accessible.

5.4.- Infinite tails

An argument that stresses the difficulties intraatliby non-ideal measurements is that posed by Elby
(1993) in the context of the Stern-Gerlach expenimeThis argument points to the fact that the
wavefunctions in z-variable typically have infinite “tails” that imdduce non-zero cross-terms;
therefore, the “tail” of the wavefunction of theddn” beam may produce detection in the upper
detector, prepared to detegt, and vice versa.

Let us consider this new argument in detail by sgppg that the imperfection is due to a non-
perfect collimation of the incoming beam. In tleisse, with the magnetic field still turned off, we
would obtain a diffuse spot instead of a definitegnp on the screen. Therefore, the perfect ready-t
measure statéry) =|0) has to be replaced with a narrow Gaussim(z)). As a consequence, the

measurement process turns out to be expressed as

=(a|1)+e|1))010o(@) ~ [wa) = ¢1)0[0.(3)+ ¢[+)Tlo(}  (-4D)
where now|¢, (2)) and|¢_(2)) are Gaussians that do not need to be as narrdeasitial one. Let
us call the widths of the upper and the lower detedAz, and Az_ respectively. Thus, the long tail
of the Gaussiafd, (2)) arrives toAz_ and the long tail of the Gaussigf_(z)) arrives toAz . We
can compute the probabilities corresponding tdahe possible cases:

p(1+)=[((1 D<¢+(Z)|)|¢m>2=|9|2f [0.3)[ dz| g (5-42)
p(1~)=|((: D<¢—(Z)|)|UJ.“> =[¢* [, Ko-(2[0. (Y dz| f  (5-43)
p(: #) =[((: [0 0. @D )| =|sf* [ [@.alo-(3) d=| & (5-49)
p(l '_): (<l D<¢—(Z)|)|wm> :|9| .[AZ_H(I)-(Z)‘ dz| £| (5-45)
where
Pr(+.00) = p(1.+)+ p(1.#) =[a +|f (5-46)
Pr(+00 () = p(+.=)+ p(1.7) =leal” +[ef (5-47)

According to Elby’s argument, these cases can & as follows:
O |011|2 is the probability thab> be detected bz,
O |clz|2 is the probability thah> be detected byAz_ (tail)
O |c21|2 is the probability thaﬁ1> be detected byAz, (tail)
0 |c22|2 is the probability thap> be detected byAz.
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Our MHI shows that, if the reliability conditiofe,|* [ |c,|* and|c,,|° 0 |c,]° holds, then the
collimation, even if not perfect, is good enough fiteasurement, sinde,,|* 0 [c|* and |c,,|° [ c)|’.
If the original Gaussian is not very narrow or thareen is placed too far from the magnet, the
measurement will be non-reliable since the with i# j, are not small enough. Nevertheless,
according to the Actualization Rule, since the @nefd context is defined by the eigenbasisHgf
and the pointer commutes witH,, we obtain an actual reading of the pointer, ibatan actual
detection inAz, or Az_.

6.- Interpretation and decoherence

As pointed out, each modal interpretation proposespecific interpretative rule of actual-value
ascription, in general with the aim of offering aadequate answer to the quantum measurement
problem. Some of them work very well in the acdooh ideal measurements, but face severe
problems in the non-ideal case. It is at this pthat environment-induced decoherence (EID) edtere
the discussion: some authors suggested that, siresuring apparatuses are never isolated from their
environments, decoherence provides an answer taadhedeal-measurement challenges (see Healey
1989, 1995; Dieks 1994a, 1994b; Bacciagaluppi aachido 1996; Monton 1999).

Since immune to the non-ideal-measurement chalgrtge MHI has no need of decoherence
for giving an adequate account of quantum measureniéevertheless, to the extent that the preferred
context is defined by the Hamiltonian of the systetonceived as a closed system with no external
interactiorr, the MHI seems to be incompatible with the EID rayagh, which relies on the interaction
between the measurement apparatas open systemand its environment. Although the theory of
decoherence does not supply an interpretation ahtgun mechanics, given its impressive success
nowadays no interpretation can ignore its resullserefore, the incompatibility between MHI and
EID would count against our interpretation. Instiection we shall argue that the conflict is myerel
apparent: in the measurement situation, the pexfecontext defined by the MHI agrees with the
pointer basis selected by EID.

6.1.- The environment-induced pointer basis

In his first papers on decoherence, Zurek (198821 %tudied physical models where the reduced
density matrix ends up being diagonal in the eigetars of an observablg, which commutes with
the HamiltonianH,i\;“E describing the apparatus-environment interactidccording to Zurek, this
property is what makeR to be the pointer observable: sinReis a constant of motion dﬂ,'\'A“E , when
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the apparatus is in one of its eigenstates, tieeaotion with the environment will leave it unpebed:
“The form of the interaction Hamiltonian between #pparatus and its environment is sufficient to
determine which observable of the measured quamsistem can be considered «recorded» by the
apparatus. The basis that contains that recetlde pointer basis of the apparatusonsists of the
eigenvectors of the operator which commutes witle t#pparatus-environment interaction
Hamiltoniar® (Zurek 1981, p. 1516). Since those first wortke condition[ R, H,'\’th} =0 has usually
been considered as the definition of the pointesisbar of the pointerR of the apparatus. For
instance, Elby (1994, p. 363) explainket P' denote an arbitrary apparatus observable that ddes
commute with the pointer readirg. Using ‘toy’ examples, along with general consadiens, Zurek
argues thatH"* commutes withP, but does not commute with af}’. In rough terms, the
interaction between the apparatus and its enviramnpecks out the pointer-reading basisMore
recently, Schlosshauer (2004, pp. 1278-1279) claif®me can then find a sufficient criterion for
dynamically stable pointer states that preserve slgestem-apparatus correlations in spite of the
interaction of the apparatus with the environmewntreéquiring all pointer state projection operators
P, =| p.)( p,| to commute with the apparatus-environment HamittorH . .”

In the 90’s, Zurek stressed that the original daéin of the pointer basis was a simplification:
when the system’s dynamics is relevant, the einsele of the preferred basis is more complicated.
Zurek introduced thepredictability sieve criterion (Zurek 1993, Zurek, Habib and Paz 1983)a
systematic strategy to identify the preferred basigeneric situations. The criterion relies on thet
that the preferred states are, by definition, tHese affected by the interaction with the envirenmn
On the basis of the application of this criteriadhree different regimes for the selection of the
preferred basis can be distinguished (Paz and Z1988, 2002; see also Zurek 2003):

» The first regime is the quantum measurement sdnatvhere the self-Hamiltonian of the system
can be neglected and the evolution is completetgidated by the interaction Hamiltonian. In such
a case, the preferred states are directly the sligis of the interaction Hamiltonian (Zurek 1981).

» The second regime is the more realistic and comgikeration, where neither the self-Hamiltonian
of the system nor the interaction with the envirentnare clearly dominant, but both induce non-
trivial evolution. In this case, the preferred ibaarises from the interplay between self-evolution
and interaction; quantum Brownian motion belongghte case (Paz 1994).

» The third regime corresponds to the situation wileeedynamics is dominated by the system’s self-
Hamiltonian. In this case, the preferred statessamply the eigenstates of this self-Hamiltonian
(Paz and Zurek 1999).
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6.2.- The modal-Hamiltonian preferred context

On the basis of the description of the measurerpentess given in Section 5, it is clear that,
according to HMI, two conditions define a quantureasurement:

(a) During a periodAt, the measured syste and the measuring devid® must interact through
an interaction Hamiltoniatd I # 0 intended to introduce a correlation between treenkable A
of S and the pointeR of D. The requirement of perfect correlation is nafued as a defining
condition of measurement, because the ActualizaRoe explains the actual reading of the
pointer R even in non-ideal measurements, that is, wheodhelation is not perfect.

(b) The measuring devicd® has to be constructed in such a way that its poilR (i) has
macroscopically distinguishable eigenvalues, afdcémmutes with the Hamiltoniakl, and
has, at least, the same degenerady @as

The first step towards dissolving the seeming ¢cinBetween MHI and EID is to understand
that, in the account given by MHI, the measuringice D is not the macroscopic apparatis
designed by the experimentalist for measurememnterally surrounded by a “battB of particles in
interaction with it), but the entire quantum systirat interacts with the syste® in the second stage
and remains closed in the third stage: it is thggean what must have a pointBr commuting with its
Hamiltonian H, . On this basis, we can now analyze the elemeitspéirticipate in the process as

described in the framework of the MHI:

* The closed systenD -e.g., the apparatu®\ plus the bath of particlesB - is certainly a
macroscopic system, whose Hamiltonian is the resfuthe interaction among a huge number of
degrees of freedom. Since, in general, synmetrieseken by interactions, the symmetry of a
Hamiltonian decreases with the complexity of thetey. Then, a macroscopic system having a
Hamiltonian with symmetries is a highly exceptiosdliation: in the generic case, the energy is the
only constant of motion of the macroscopic systefts a consequence, in realistic measurement

situations,H is non-degenerate (see eq. (5-8),

Hp |0on;) = 0 | ) where{| oy, )} is a basis oH, (6-1)
This means that, Whe[rR,HD] =0, we can guarantee th& has, at least, the same degeneracies as

H, becauseH, is non-degenerate.

* The pointer R cannot have such a huge number of different eigleles asH,, because the
experimental physicist must be able to discrimirsateong them (for instance, in the Stern-Gerlach
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experiment the pointer has three eigenvalues)s M@ians thaR is a “collective” observable dD
(see Omnés 1994, 1999), that is, a highly degemeyhservable that does not “see” the vast

majority of the degrees of freedom Df:

R=> LR, (6-2)
n
where the se{&} of the eigenprojectors dR spans the Hilbert spadé, of D. In other words,
the eigenprojectors ofR introduce a sort of “coarse-graining” onto the bditt spaceHj .
Therefore, if the HamiltoniarH, is non-degenerate, the conditipR,H,]| =0 (see eq. (5-9))
implies thatR can be expressed in terms of the energy eigenflasjg} as

=518~ 2 15 o

This expression shows that, singezr,., R has more degeneracies thidp .

(6-3)

The requiremen{R,H,] =0, far from being arad hoccondition necessary to apply the modal-
Hamiltonian Actualization Rule, has a clear physioganing: it is essential to preserve the
stationary behavior oR during the third stage of the measurement processider to make the
reading of R possible. If this requirement did not hold beeao$ the uncontrollable interaction
among the microscopic degrees of freedom of theresaopic apparatus or between the
macroscopic apparatus and an external “bath”, #aeling of R would constantly change and
measurement would be impossible. Therefore, tmeptete experimental arrangement has to be
designed in such a way that the uncontrollable ekgyof freedom oD do not affect significantly
the stationarity of the pointer. This goal maydmhieved by many different technological means;
but, in any case, measurement has to be a cowtratigation where the reading of a stable pointer

can be obtained

6.3.- The environment-induced pointer basis frooloaed-system perspective

In the context of EID, during the third stage theasuring apparatugl does no longer interact with

the measured syster8 but interacts with the environmem. If, in the context of MHI, we use

D =M +E to call the whole system that interacts wkhin the second stage but remains closed

during the third stage, the question is how to fif¢the open interacting parts @ to be conceived

as the measuring apparatMs and the environmerE. This is a legitimate question because, as we

stressed from the very beginning, a whole closeslesy may be partitioned in many different ways,

none of them more “essential” than the others (ktaen and Wickramasekara 2007).
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A natural assumption is to consider the macroscopiaterial apparatusA built for
measurement as “the measuring apparaMs; and the batlB of the particles scattering ok as
“the environment’E ; then,D = A +B is the closed system resulting from the interacbhetweenA
and B. From this position, it is supposed that is the open system that decoheres: the reduced
density operatoprA(t) of A should converge to a final time-independeﬁt diagonal in the pointer
basis ofA , that is, of its Hilbert spackl,, and the pointeR should define such a basis. However,
although apparently “natural”, this is not the bespice for the split oD, since it does not take into
account the environmentternal to the deviceA . In fact, being a macroscopic bod¥, has a huge
number of degrees of freedom, which have to bersmgrained” byR if it is to play the role of the
pointer. In other words, since the pointer must have a small number of different eigenvalioes
allow the observer to discriminate among thd® s a highly degenerate observable on the Hilbert
spaceH, of the open macroscopic apparatisand, as a consequence, it does not definasés of
H,.

Since a closed quantum system can be partition@daimy, equally legitimate mannerd, can
be split in a theoretically better founded wayhie measurement case. Let us recall that the pdite
is the observable whose eigenvectors became dmwdehdath the eigenvectors of an observable of the
measured system during the second stage of thegwoand that the interaction in that stage was
deliberately designed to introduce such a cormtati So, if we want that during the third staBe
really defines a basis, the open “measuring appsirdl must be the part dD corresponding to the
Hilbert spaceH,, where the pointer is non-degenerate. If we &}l the pointer belonging to
H,, OH,, , itreads

Ru = z I’n| rn><rn| (6-4)
where {|rn>} is a basis ofH,,. Then, the Felevant partition s, =H,, OHg, where H. is the
Hilbert space of the “environment&, with basis{|qﬂ>}. Then, the pointer acting oRl, can be
expressed as a highly degenerate observable

R= 8,0 1= Zela(rd || Tlea(ed |- il nlep(rnlef=T R ©9

n

This agrees with the features Bf required by MHI:R introduces a sort of “coarse-graining” onto the
Hilbert spaceH, (compare eq. (6-5) with eq. (6-2)). The many degrof freedom corresponding to
the degeneracies dR in Hy play the role of the “environment&, composed by the microscopic
degrees of freedom of the macroscopic appar#@us-internal environment and the degrees of

freedom of the batlB —external environment
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6.4.- Compatibility between interpretation and deeence

As we have seen, in the first papers on decohe,rﬂnmeonditior{ R, HHE] =0 was considered as the
definition of the pointer basis. However, this dé@fon involves several assumptions. In fact, the
entangled statfge(t)) of the whole system evolves according to the Stihger equation under the
action of the total Hamiltoniat gye = H g+ H ,+ H g+ H'5,+ H St H™,. So, first it is considered
that the system-environment interaction and théesysapparatus interaction are zemg‘ézo and
Hg‘htﬂ =0. This assumption is reasonable on the basiseofitisign of the measurement arrangement:
after a short time, any interaction with the systemds and the subsysteM +E follows its
independent dynamical evolution; for this reasdsp #he self-HamiltoniarHg of the system can be

disregarded. Then, the stability of the pointacsy requires that:
[RHye]=0  with Hye=H, Olc+1,OH+HY: (6-6)

If we recall that the pointeR is an observable highly degenerate in tieternal and external
degrees of freedom of the environment (see eq))(@Hen condition (6-6) results

[R Hye] =[ Ry O le, Hy O I+ 1, O He+ HY | =0 (6-7)
But since[Ry O I, I, O H] =0, then the stability requirement for the pointesetvable becomes

that it commutes with the HamiltoniarH,, 01 +H ., where the self-Hamiltonian of the
environment is not involved:

[RH, Olg+Hy:|=0 (6-8)
This argument shows that the conditicEnR, H,i\’,l“E]=O, introduced in the first papers on
decoherence, is a particular case that holds ohbnwhe self-Hamiltonian dff can be disregarded.
It is also clear that the three regimes distingeisby Zurek as the result of the application of the

predictability sieve turn out to be the three mautr cases of condition (6-8), and can be redesdri
in terms of that condition:

> When H,, 010 Ht, the self-Hamiltonian oM can be neglected, and th%rﬁi, H,‘GtE]:O.
Therefore, the preferred basis is defined by theraction HamiltoniarH it .

> When H,, Ol 0HY, neither the self-Hamiltonian oM nor the interaction with the
environment are clearly dominant. In this case pilederred basis is defined by condition (6-8).

> When H,, 010 Ht, the dynamics is dominated by the self-Hamilton@&nM and, then,
[R Hy O 1] =[Ry O Ig, Hy, O 1] =[Ry, Hy] = 0. Therefore, the preferred states are simply the
eigenstates oH,, .
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As a consequence, the fact (noticed by Schlosstzi@st, p. 1280; see also Schlosshauer 2007, pp.
84-85) that many systems are typically found inrgpeeigenstates although the interaction
Hamiltonian depends on an observable different tbhasrgy, far from being surprising, is the
necessary consequence of the requirement of sydioitithe preferred basis. But the point we want
stress here is that, when the EID pointer basisoissidered from this closed-system viewpoint, it
agrees with the preferred context as defined byMid# Actualization Rule: in both cases, the
pointer/preferred context is given by the Hamileoniof the whole closed system. In fact, the three
regimes identified and obtained case by case bgkZturn out to be particular cases of the MHI
characterization of the preferred context: if thef@rred states are defined by the eigenstateleof t
Hamiltonian of the whole system, it is not hard¢alize that they will depend on the Hamiltonian’s
component that dominates the whole evolution.

Moreover, from this perspective the first regima &e justified on general grounds. According
to Zurek, the first regime is the quantum measurgrséuation, where the self-Hamiltonian of the
measuring systelM can be neglected and the evolution is completetyidated by the interaction
Hamiltonian: this means thad,, 0 1.0 HYL . If, as explained in the previous sectidn, is the part
of the closed systerd “viewed” by the pointerR and the environment carries over almost all the
degrees of freedom oD, it seems reasonable to suppose that, in gentral,Hamiltonian
corresponding to the interaction with that huge hanof degrees of freedom is much greater than the
self-Hamiltonian of the “small” part defined by tpeinter: the conditiorH,, 010 H % leading to
the first regime turns out to have a physical ficgtion.

7.- The philosophical implications of the inter@tbn

From a realist perspective, to interpret a theanpants to saying how reality would be if the theory
were true. Although, in general, physicists agretheir use of the physical language, it is neeH-
evident matter what the relation between physiaabliage and reality is: physical theories do not
provide their own interpretations. Therefore, i€ want to give an interpretation for quantum
mechanics, we have to formulate ontological intetgdive postulates that define the ontological
reference of each term of the theory. In otherdspwe have to specify which kind of items in the
ontology (objects, properties, facts, etc.) is espnted by each physical term (systems, observables
states, etc.). In this way we shall be able towhgt ontological categoriepopulate the quantum
mechanical reality: the task of fixirtge ontological reference of the physical languagenavoidable

if we want to understand the picture of reality gligd by our interpretation. In order to distingiui
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between the physical language and its ontologef@rence, we shall use the following terminology:
the symbol [-] " denotes the ontological item referred to by therdv « * of the physical language.

7.1.- Properties of elemental and composite systems

One of the main areas of controversy in contemponagtaphysics is the problem of the nature of
individuals or particular objects: is an individual substratum supporting properties or a mere
“bundle” of properties? (for a survey, see Loux 899The idea of a substratum acting as a bearer of
properties and/or as the principle of individuatibas pervaded the history of philosophy. For
instance, it is present under different forms imstatle’s “primary substance”, in Locke’s doctriné
“substance in general” or in Leibniz’'s monads. &ltveless, many philosophers belonging to the
empiricist tradition, from Hume to Russell, Ayerdasoodman, have considered the posit of a
characterless substratum as a metaphysical alf\ssa.consequence, they have adopted some version
of the “bundle theory”, according to which an indwal is nothing but a bundle of properties:
properties have metaphysical priority over indidtduand, therefore, they are the fundamental items
of the ontology.

The assumption of an ontology of substances angbepties is implicit in the quantum
physicists’ everyday discourse. Anchored in théir@ary language of subjects and predicates, they
usually speak about electrons as having a certaamentum or photons as having a certain
polarization, as if there existed an underlyingmgbhing” to which properties are “stuck”. But
perhaps the ordinary language is not the only fatttat favors an ontological picture containing the
categories of substance and of property. In tlseodirse of physics, states are what “label” the
guantum systems and identify them; observables‘aplied” to the states and are conceived as
representing the properties of the system. Indtieodox formalism of quantum mechanics, the
Hilbert space is taken as the basic formal eleroétihe theory: states, represented by vectors ef th
Hilbert space, are logically prior; observablestum, are logically posterior since they are repreéed
by operators acting on those previously definedtorsc When the logical priority of states over
observables embodied in the Hilbert space formaisrandowed with an ontological content, the
assumption of an ontology of substances and piliepenvith the traditional ontological priority of
substances over properties, turns out to be “nidtura

Our MHI, on the contrary, adopts an algebraic apphoas its formal starting point. In this
formalism, the basic element of the theory is thace of observables; states are logically posterior
since they are represented by functionals overspiaze of observables. |If this logical priority of
observables over states is transferred to the ayitl domain, the space of observables turnsmut t
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embody the representation of the elemental itemthefontology and the way in which they are
arranged in a structure. On this basis, we inttedbe following ontological interpretative postel

OIP1: Given a quantum system represented &y(O,H), the observableD O

ontologically representype-properties[O], and their corresponding eigenvalues

ontologically represertase-propertiegO:q] of the type-propertyO]. In particular, the
projectors PJO are observables that ontologically represent mmmerties[P] with

case-propertiefP: 1] and[P: 0].

OIP2: Given a composite quantum system represente® byS'0 S ( O,H) , where
st (0L HY and S?% (0%,H?), and given the observables 0O of S*, A°00? of
S2?, and the observables= A'0 1?00 and A" = f(A1D 12,110 AZ)DO of S, where

f is an analytical function, then, (i) the obsereabh and A' ontologically represerhe
same type-propertyA| :[Al] with the same case-propertie{sﬁx: ail] :[Al: al] where
the a1-1 are the eigenvalues of both and A', and (ii) the observablé’ ontologically
represents a type-prope@Af} with case-propertieEAf : f(a\l ,a]-z)] where thea’, aj2
are the eigenvalues o' and A respectively;[Af} is equivalent to the combination
between[A1 d IZJ and[l o AZJ, represented by the functioh.

The interpretational postulate OIP2 expresses #ualuiguantum assumption according to which the
observable A' of a subsystemS®' and the observableA= A'0J 1> of the composite system
S=S'0 S represent the same property. On the other hhigipbstulate establishes the necessary
connections between the properties of the compeggtem and the properties of its subsystems. The
assumption of these connections is not a spe@htufe of quantum mechanics, but is also usual in
classical mechanics where we consider, for instaheeenergy of a two-particles composite system as
a particular combination (expressed by the sunth@®&nergies of the component subsystems.

Summing up, whereas an ontology of substances ipeéies seems to be the natural reference
of the theory in the Hilbert space formalism, tHgelraic approach favors the assumption of an
ontology of properties, where the ontological catggf substance is absent.

7.2.- Possibilities and probabilities

Up to this point we have identified type-propertesd case-properties in the ontology. However,
these are not actual but possible properties.

The nature of possibility has been one of the numsttroversial issues in the history of

philosophy. Nevertheless, two general conceptaamsbe identified, both of which find their roots i
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Antiquity. One of them, which is usually calledctualisni, is the conception that reduces possibility
to actuality. This was the position of Diodorusofus; in Cicero’s words,Diodorus defines the
possible as that which either is or will béited in Kneale & Kneale 1962, p. 117). Thisewi
survived over the centuries up to our time; fortanse, for Bertrand Russell “possible” means
“sometimes”, whereas “necessary” means “always”’s@el 1919). The other conception, called
“possibilisii, conceives possibility as an ontologically irrethle feature of reality. From this
perspective, the stoic Crissipus defined possiBlétlaat which is not prevented by anything from
happening even if it does not happéeited in Bunge 1977, p. 172). In present dayapkysics, the
debate actualism-possibilism is still alive. Hoe Bctualists, the adjective “actual” is redundaon-
actual possible items (objects, properties, fagts) do not exist, they are nothing. Accordinghe
possibilists, on the contrary, not every possilbdeni is an actual item: possible itemgossibilia-
constitute a basic ontological category (see Meg@er).

As we have seen, according to modal interpretatithresformalism of quantum mechanics does
not determine what actually is the case, but ratthescribes whaimay be the case with its
corresponding probability. Once the actual-valoddervables (type-properties) are selected by a
certain rule of actual-value-ascription, the actadurrence of a particular value of such obseesbl
(a case-property) is an essentially indeterministienomenon which, as a consequence, cannot be
determined by the theory. This means that, forheactual-valued observable, among all the
possibilities described by the theory, only onaasually realized: the remaining possibilities dut n
become actual, and they might never become actu#ihd particular system under consideration.
Nonetheless, from the realist perspective undeglymodal interpretations, if quantum mechanics were
true, it would describe reality. So, which is tteality accounted for by the theory? Certainlyt no
actual reality: if quantum mechanics is about whay be the case, it descriljgsssible reality.

On this basis, according to our MHI quantum meotg®@mbodies a possibilist, non-actualist
possibility: a possible property does not needdoome actual to be real. This possibility is dedin
by the postulates of quantum mechanics and is ethicible to actuality. This means that reality
spreads out in two realms, thealm of possibilityand therealm of actuality In Aristotelian terms,
being can be said in different ways: as possibi@goer as actual being. And none of them is
reducible to the other

The non-actualist possibility is, then, conceivexdaaontological propensity to actualizatipn
whose measure is represented by the quantum phbleakand codified by the quantum state:

OIP3: Given an elemental quantum system represente®:{¥,H), its statepO"
codifies the ontological propensitiés actualizationof the properties o5, and the time
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evolution of p given by the Schrddinger equation ontologicallpresentsthe time
evolution of those ontological propensities

Since in our MHI probability is not defined by eeisiic notions as evidence or hypothesis, the
concept of probability is endowed with an ontolagimeaning. From our perspective probability is

the measure of a possibilist, non-actualist podsiowhose real character does not depend on its
actualization, and which applies to single quansystems. As a consequence, the MHI does not
favor a frequentist reading of probability, whichrooted in an actualist conception of probab#gityl

is unable to face the problem of the single-casbatility assignment (see Giere 1976).

7.3.- Systems as bundles of possible properties

According to the traditional versions of the bunthieory, an individual is the convergence of certai
case-properties, under the assumption that thepsqeerties corresponding to that individual afe al
determined in terms of an actual case-property.r iRstance, a particular billiard ball is the
convergence of an actual value of position, anaahape, say round, an actual color, say white, et
So, in the debates about the metaphysical naturedofiduals, the problem is to decide whether this
individual is a substratum in which position, roneds and whiteness inhere, or it is the mere bundle
of those case-properties. But in both cases tbpepties taken into account are actual propertias.
other words, bundle theories identify individualghAbundles ofctual properties.

The fact that our interpretation adopts an ontolo§yroperties as the reference of quantum
mechanics does not mean that it identifies the uarsystem with a bundle of properties in the same
sense as in traditional bundle theories, designe@the paradigm of classical individuals. Wewno
that not all the possible type-properties leaddima@ case-properties; only one of the case-primgsert
of each type-property selected by the preferredestrenters the realm of actuality. Of course, in
each context one could insist on the classical afegpe-properties with their actual case-progsrti
with no contradiction. In other words, the pictufea bundle of actual case-properties that defanes
classical individual could be retained in each egnt But as soon as we try to extend this ontchgi
picture to all the contexts by conceiving the indiaal as a bundle of bundles, the Kochen-Specker
theorem imposes an insurmountable barrier: it ispussible to actually ascribe the case-properties
corresponding to all the type-properties to thaesysin a non-contradictory manner. Therefore, the
classical idea of a bundle of bundlesaofual properties does not work in the quantum ontology.

From our perspective, if the quantum ontology udahto two irreducible realms, the realm of
possibility has to be taken into account when degigvhat kind of properties constitutes the quantum
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bundle. In our interpretation, the quantum sysiemdentified by its space of observables: its elata
ontologically represent items belonging to themeaf possibility: the space of observables defiaés
the “possible” type-properties with their corresgmy “possible” case-properties. Moreover, the
realm of possibility is as real as the realm otuabty. From this viewpoint, it seems reasonable t
conceive a quantum system as the bundle of allpgbgsible” case-properties defined by the space of
observables. This reading has the advantage ofjbheimune to the challenge represented by the
Kochen-Specker theorem, since this theorem imponse®striction on possibilities. In other words,
from our perspective the quantum system is notralleuof actual case-properties as in the traditiona

bundle theories, b bundle of possible case-propertigsnhabits the realm of possibility

It is worth noting that, when the quantum systencdaceived in this way, the account of its
identity over time poses no difficulty: the spadeobservables remains invariant during the entire
“life” of the system; the dynamics of the systengigen only by the time evolution of propensities.
On the other hand, nothing happening in the rediractuality modifies the identity of the quantum
system: it is the same no matter what possible pag®erties become actual.

7.4.- The Galilean invariance of quantum systems

Any Galilean transformatiol, has to apply to the quantum system represente®:p®,H) as
S:(O,H) - S:(0O,H"). However, since each, is an automorphisni, X - X , the Galilean

transformations apply to the observables of théesysn such a way that
OT,, if O0OO andO - O', thenO'TO (7-1)

In other words, the space of observables of a guaslystem is closed under the transformations of

the Galilean group,
oT7,,0 - O' (7-2)

This feature is physically reasonable, since oresawmt expect that the mere application of a Galile
transformation on the syste® modifies its identity by modifying its space ofsalovablesO (see
Georgi 1982). Therefore, the result of the applicaof the Galilean transformations to a quantum
system will only depend on the way in which the Heonian is transformed:

O0T,, S:(O,H) - S:(O,H") (7-3)

where H transforms unitarily asH'=U HU;', U, =€*% and K, is the generator of the
transformation, .
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As we have seen, when there are no external ftelelSchrodinger equation is invariant under
the Galilean group, and this means that the agmitaf a Galilean transformation does not intragluc
a modification in the physical situation, but oebypresses a change in the perspective from wheh th
system is described. As a consequence, we camtakiae, in this case, the system does not chaage i
identity as the result of being Galilean-transfodmihe system should be a Galilean-invariant object
In the context of the MHI, the invariance of thetgm under time-displacements, space-displacements
and space-rotations follows directly from the inaace of the Hamiltonian under those
transformations:

S:(0O,H) ~ S:(O,H)= S(QH) (7-4)

But the situation is, again, completely differeat boost-transformations: although the Schrédinger
equation is invariant, the Hamiltonian is not ingat under boosts.

Nevertheless, we have shown that any quantum syst®m with Hamiltonian
H =P?/2m+ W= K+ W is a composite syster8 = §, O S, whereS,: (O, ,Hy,) is defined by
the internal energ¥d,, JQ,,, andS: (O ,Hy ) is defined by the kinetic enerdy, 0O, , in such a

way that

2
=2P—m+W=HKDIW+IKDHW (7-5)

Let us recall that, by OIP2, sinc@= §, U &, the observabléd,, 0O, of §, and the observable
W=I,0H, of S represent the same type propev[ﬂyiw] =[W], with the same case-properties,
[Hyw,] =[W:w,]. We have also proved that, under boost transfioms the Hamiltonian
transforms as

2
HHH'=(%+T3J+W=H;(DIW+IKDHW (7-6)

Therefore, the boost-transformed system is agawnaposite systens = §, I S, whose elemental
subsystems are the origing}, and the systen$', : (O, ,H'c ) now defined by a kinetic enerdy',
that adds the kinetic enerdyg of the boost to the original kinetic energy, .

This argument shows that, when there are no extémds, a boost-transformation acts on a
system represented I8 = §, [ & as

S=%,0S - S=§0 S, (7-7)
When, in particular,S is described in the reference frame at rest wapect to its center of mass,
P =0; then,S is an elemental system with Hamiltonigh=W , on which a boost acts as

S=§, - S=§0 S« (7-8)
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where the subsyster8', is now defined only by the kinetic energy of theost. Therefore, the
subsystemS,,, carrying the internal energy of the system, isdponvariant, in agreement with the
fact that the internal enerddy/ is a Casimir operator of the Galilean group. &pplication of a boost-
transformation only affects the subsysteé®p by adding the kinetic energy of the boost to its
Hamiltonian:

Sw ~ Sw= Sy Hyw =Hy (7-9)
S« - Sk H'x =Hg +Hg (7-10)

This result leads us to ask ourselves about thaagital status of both subsystems.

On the one hand, when there are no external fith#saction of a boost-transformation has a
well-defined manifestation in the energy spectrunthe composite syster = §,, [ & : the boost
produces a Doppler shift on the energySof But we also know that energy is defined up tmastant
value: the relevant information about the energgctpim of a system is contained in its internal
energy, and the kinetic energy only introducesi#t ehthat spectrum. Therefore, the boost-invatia
subsystemS,, carries the physically meaningful structure of émergy spectrum, anfl;, represents
an energy shift which, although observable, is ajly non relevant and merely relative to the
reference frame used for the description. On therdhand, even the composite or elemental characte
of the systemS depends on the particular reference frame seleckedact, in the reference frame
RF at rest with respect to the center of maSss §, is an elemental system; when, in turn, we
decide to describe the system in a reference fr&Ré uniformly moving with respect t&RF, the
system turns out to be composig= §, O &.

Both considerations point to the same direction:aibjectivecontent of the description is given
by the internal energy. In other words, the olecdescription of a system i§,,, that is, the
description in the reference frame at rest witlpees to the center of mass, where=W: S, is
completely invariant under the Galilean group. t®& contrary,S, , which carries the kinetic energy,
is a sort of “pseudo-system”, whose identity is fied by a mere change of the descriptive
perspective, and may even “appear” and “disappesd consequence of such a change. On this basis,
we can say thab = §, U S and S, refer to the samentological system

[S]=[sv O &]=[ ] (7-11)
where the symbol=" strictly denotedogical identity(that is, ifa= Db, thena and b are two names

for the same item). Therefore, when ontologicadtayms are free from external fields, they are
invariant under all the transformations of the &aln group, in particular, under boosts,

[Sl=[svO &]=[S]-[Sl=] &0 sl=[ A=[ k (7-12)
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The intuition about a strong link between invararand objectivity is rooted in a natural idea:
what is objective should not depend on the pawdicpérspective used for the description; or, irugro
theoretical terms, what is objective according tth@ory is what is invariant under the symmetry
group of the theory. This idea is not new. It wadely discussed in the context of special and
general relativity with respect to the ontologistdtus of space and timddénceforth space for itself,
and time by itself, are doomed to fade away intoensbadows, and only a kind of union of the two
will preserve an independent realitfMinkowski, 1923, p. 75). The claim that objedty means
invariance is also a central thesis of Weyl's b&knmetry(1952). In recent times, the idea has
strongly reappeared in several works. For instantdier deep analysis of quantum field theory,
Auyang (1995) makes her general concept of “objeot’be founded on its invariance under
transformations among all representations. In,ttine assumption that invariance is the root of
objectivity is the central theme of Nozick's bobkariances: The Structure of the Objective World
(2001). Our conclusion about the objective desiompof a quantum system is in complete agreement
with the general idea behind those works: whenGh#lean group leaves invariant the Schrodinger
equation, the objective description of the systesmalso invariant and, as a consequence, the
ontological system is left unaffected by the Galildransformations.

8.- Conclusions

In this chapter we have presented a new realist;cotlapse interpretation of quantum mechanics,
which moves away from the prevailing trend in thbject by paying special attention to the physical
relevance of the interpretation. In particular, guoposal endows the Hamiltonian of the system,
systematically ignored in the traditional interpaitéins, with a central role: it distinguishes begwe
systems and subsystems, and is the main ingredie¢hé selection of the actual-valued observables.
The main advantages of the MHI are the following:

» The interpretation is Galilean-invariant: as expdcthe preferred context does not depend on the
reference frame selected for the description.

» The application of the interpretation to severalygtal situations shows its agreement with
theoretical commitments and empirical evidence ognfiom the practice of physics.

» When used to account for quantum measurementsntémpretation not only explains the definite
reading of the pointer both in the ideal and innbae-ideal case, but also accounts for the difiegen
between reliable and non-reliable measuremenes;dgordance with experimental practice
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» The interpretation is compatible with the decoheeeapproach in the sense that the preferred
context defined by the Actualization Rule agreeth\he pointer basis selected by the environment-
induced decoherence.

» The interpretation describes the elemental categoof the ontology referred to by quantum
mechanics: an ontology with two irreducible andalyureal realms, the realm of actuality and the
realm of possibility, where quantum systems aredlesof possible properties

Of course, the MHI has not supplied solutions tb the challenges raised by quantum
mechanics. Nevertheless, on the basis of its ddgas, it deserves to be considered for further
developments.
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