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1.  Introduction 

In the textbooks on quantum mechanics, the laws of the theory are presented as applied to closed 

quantum systems. The state of a closed quantum system U  is represented by a density operator 

ρ̂ , and its unitary time evolution is governed by the Schrödinger equation. However, although 

there is no universally accepted and definitive interpretation of the formalism, certain ideas lead 

us to carefully consider the concept of quantum system. In fact, the study of phenomena such as 

relaxation and decoherence requires the introduction of the notion of open system, that is, a 

quantum system in interaction with other quantum systems.  

In general, the subsystems of a closed system U  interact with each other. The state of each 

one of these subsystems is represented by a reduced operator Rρ̂ , obtained from the state ρ̂  of 

the total system U  by means of the mathematical operation called partial trace. The reduced 

operator Rρ̂  of a subsystem allows us to compute the expectation value of all its observables. For 

this reason, the usual practice is to conceive open subsystems as legitimate quantum systems (for 

example, a particle), represented by their corresponding reduced states Rρ̂ , whose evolution is 

not ruled by the Schrödinger equation. For this reason, an open quantum system can follow non-

unitary evolutions, such as relaxation and decoherence [1]. 

Decoherence is a process originally proposed to explain the diagonalization of the reduced 

operator [2]. The orthodox approach considers the system under study embedded in an 

environment that induces decoherence; then, environment-induced decoherence (EID) may only 

occur in open systems. According to this approach, under certain conditions the reduced state of 

an open system becomes diagonal, and this fact makes possible its interpretation as a classical 

state [3]. Thus, decoherence allows us to study the quantum-to-classical transition of a quantum 

system, for instance, a quantum particle. 

In this paper we will study the properties of open systems, and we will discuss their 

ontological status. First, we will compare the mathematical properties of the quantum state with 
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those of the reduced state. Following the road opened by Bernard d'Espagnat [4], we will argue 

that, although ρ̂  and Rρ̂  have similar mathematical structures, they cannot be interpreted in the 

same way. In a second stage, we will study the phenomenon of decoherence in situations where 

the whole closed system can be split into an open system of interest and its environment in 

different ways [5 - 6]. In particular, we will show that the lack of an univocal criterion to define 

the open system and its environment is a manifestation of the relative nature of decoherence; this 

fact prevents us from conceiving the open system as a physical entity of the same ontological 

status as that of the closed system. Finally, on the basis of previous results [7], we will present a 

formalism designed to study the phenomena of relaxation and decoherence from a closed-system 

perspective. Since this formalism does not resort to reduced states, it avoids certain interpretive 

problems that arise in the orthodox approach. As a consequence, we conclude that, given the 

problems of interpretation derived from the use of reduced states, the notion of open quantum 

system should be avoided. According to this viewpoint, the only legitimate quantum system is the 

whole closed system with its unitary evolution, and the study of its dynamical properties is 

sufficient to describe the phenomena of decoherence and relaxation. 

2.  States and expectation values in quantum mechanics 

According to the formalism of quantum mechanics, any system has an associated state operator 

( )ˆ tρ  that carries all the possible information about the system. The mathematical representation 

of the state belongs to the Liouville space L . The evolution of the state is given by the Liouville-

von Neumann equation [1]: 

 [ ]ρρ
ˆ,ˆ1ˆ

H
idt

d

ℏ
=  (1.1) 

where Ĥ  is the Hamiltonian of the system. Every physical property of the system is represented 

by a specific observable Ô  belonging to the dual space of L , ′L . In order to compute quantities 

of physical interest, algebraic operations have to be applied to these operators. For example, the 

expectation value of the property represented by Ô , for a system in state ρ̂ , is computed as the 

trace of the product of the two corresponding operators [8]: 
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ˆ

ˆ ˆˆO Tr O
ρ

ρ  (1.2) 

In the case of systems that are not composite, there is no substantial difference between 

knowing the state and knowing the expectation values of all the observables of the system: 

(i) given the state, the expectation value of any observable can be computed, and 

(ii)  given the expectation value of any observable, the state of the system can be 

computed. 

In this non-composite case, it is usual to work in the context of a state-based description. 

Nevertheless, it is worth recalling that, given the nature of quantum mechanics, all the 

information of physical interest is given through expectation values. 

In the case of composite systems, the initial state of the whole system is computed as the 

tensor product of the states of its subsystems. For instance, in a two-particle system, the 

procedure is the following one [9]: 

• We consider that the two particles are initially independent ( 

• simple systems): particle 1 in the state 1(0)ρ̂  and particle 2 in the state 2(0)ρ̂ . 

• We assume that, at a certain time, the two particles begin to interact with each other and, since 

then, they are considered parts of a composite system whose initial state is (0)
T

ρ̂ . 

• We compute the initial state of the composite system by means of the tensor product of the 

original particle’s initial states: 1 2(0) (0) (0)⊗ =
T

ˆ ˆ ˆρ ρ ρ . 

• At the initial time, the state of each particle can be recovered by means of the algebraic 

operation of partial trace, which consists in tracing (deleting) the degrees of freedom of the 

other particle: 

( )1 2(0) (0)=
T

ˆ ˆTrρ ρ    and   ( )2 1(0) (0)=
T

ˆ ˆTrρ ρ  

• The total state of system evolves, as any quantum state, according to the Liouville von 

Neumann equation:  

 
( ) 1

( ) =  ℏ

T

T

ˆd t ˆ ˆH, t
dt i

ρ ρ  (1.3) 
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2.1 The open-system perspective 

In many physical problems it is useful to take up the idea of individual particles as the 

components of the total system. This idea is suggested by the fact that, at the initial time, the 

partial trace onto the total state of the closed system yields the state of each component particle. 

However, the generalization of this procedure for all times is, at least, controversial. 

Once the total closed system has been identified, it evolves as a whole according to the 

Liouville-von Neumann equation governed by the total Hamiltonian. Nothing prevents us to take 

the partial trace of the evolved total state, obtaining a mathematical entity called reduced state 

that has the appearance of a quantum state: 

 ( )1 2( ) ( )=
T

ˆ ˆt Tr tρ ρ  (1.4) 

But this reduced state does not evolve according to the Liouville-von Neumann equation: 

 1
1 1

( ) 1
( ) ≠  ℏ

ˆd t ˆ ˆH , t
dt i

ρ ρ  (1.5) 

The dynamics of the reduced state is ruled by a non-unitary master equation, different in each 

particular problem. However, it is common to assume that the particle 1 can be reidentified in the 

composite system, i.e., that it is a quantum system (although not obeying the Liouville-von 

Neumann equation) represented by the reduced state operator 1( )ˆ tρ . What supports this 

assumption is the fact that, although the evolution of the reduced state is not ruled by the 

Liouville-von Neumann equation, given any observable 1Ô  of the particle 1, its expectation value 

can be computed as: 

 ( ))(ˆˆˆ
11

)(ˆ
1

1

tOTrO
t

ρ
ρ

=  (1.6) 

This means that the expectation values of the observables corresponding to particle 1 are 

computed in the same way as in the case of closed systems, but using the reduced state operator 

1( )ˆ tρ  instead of the total state. Those expectation values are all the information that can be 

obtained when one has experimental access only to particle 1. 

2.2 The closed-system perspective 

Although we may be interested in studying the behavior of the different parts of a closed system, 
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the concept of reduced state is controversial, as d'Espagnat showed in his already classical 

arguments [4]. For this reason, we will show that it is not necessary to resort to reduced states for 

describing the behavior of the parts of a closed system.  

The closed-system perspective allows us to study the evolution of the different degrees of 

freedom in a closed system by considering the expectation values of the corresponding relevant 

observables. Indeed, if we consider observables that act only on the system of interest (particle 1): 

 21
ˆˆˆ IOOR ⊗=  (1.7) 

where 1Ô  is any observable of particle 1 and 2̂I  is the identity of the space of observables of 

particle 2, then we can compute the expectation values of these observables as follows: 

( ) ( )( ) ( )
)(ˆ11121

)(ˆ 1

ˆ)(ˆˆ)(ˆˆˆ)(ˆˆˆ
t

TTR
t

R OtOTrtIOTrtOTrO
T ρρ

ρρρ ==⊗==  (1.8) 

This last expression tells us that it is not necessary to define the reduced state, nor even to 

mention the particle 1. We can obtain the expectation values 
)(ˆ1

1

ˆ
t

O
ρ

, i.e. the information of 

interest, by studying the behavior of the state of the closed system )(ˆ tTρ  and the relevant 

observables RÔ  of the closed system.  

This shows that, in the case of composite systems, there is no difference between knowing 

the reduced state and knowing the expectation values of all the relevant observables of the form 

21
ˆˆˆ IOOR ⊗= : 

(i) given the reduced state of the particle, the expectation value of any relevant 

observable can be computed, and 

(ii)  given the expectation value of any relevant observable, the reduced state of the 

particle can be computed. 

Therefore, in this case the state-based description of the particle is not necessary: its behavior can 

be accounted for from the perspective of the whole closed system. 

3.  Reduced states in decoherence 

The Correspondence Principle establishes that it should be possible to recover the laws of 

classical mechanics from those of quantum mechanics [10]. One way to establish the link 
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between both theories is through the theory of algebraic deformations [11 -12], whereby it is 

possible to “deform” an algebra to turn it into another, through some operator. By means of this 

theory it is possible to transform the quantum state ρ̂  into a distribution ( )q, pρ  in phase space. 

Physicists aim to interpret this function as a probability distribution in phase space (a state 

( )q, pρ  of classical statistical mechanics), which sets the probability that the system has a well 

defined position-momentum classical pair. But for a correct operation of this procedure, it is 

necessary a diagonal quantum state ρ̂ . For this reason, decoherence is a process originally 

designed to explain the diagonalization of the state. 

3.1 Environment Induced Decoherence 

In the context of the orthodox version, Environment Induced Decoherence (EID), the formalism 

of decoherence applies only to open systems because, as its name suggests, the system S under 

study is considered embedded in an environment E which induces decoherence [3]. The system S 

is an open system with an associated Hilbert space HS , and the environment is an open system 

with an associated Hilbert space EH . The corresponding von Neumann-Liouville spaces are 

S S S= ⊗L �H H  and E E E= ⊗L �H H . According to the EID approach, the study of decoherence is 

based on the study of the evolution of the reduced state represented in a given basis. Either 

explicitly computing the state )(ˆ tSρ  or analyzing case by case the master equation, we can 

determine whether, under certain conditions, the reduced state operator becomes diagonal or not. 

The non-diagonal terms of the state are linked to events that do not have a classical analogue. For 

this reason it is usually said that, when the state becomes diagonal, it represents the classical 

aspects of the system (to complete the classical limit we must also apply the Wigner transform 

and ℏ→0). In many models with a huge number of degrees of freedom, it is shown that:  

 diagonaltt D
SS

tt D

   )(ˆ)(ˆlim )(ρρ =
→

 (1.9) 

According to the EID approach, since after a decoherence time Dt  the operator )(ˆ tSρ  

becomes diagonal )(ˆ )( tD
Sρ , then there is a process of decoherence induced by the large number of 

degrees of freedom of the environment. This is equivalent to think that )(ˆ tSρ  represents the state 

of a part of the total system, and that this part became classical. In general, this part is interpreted 
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as a particle. Since the state became diagonal and represents a particle, then it is usually said that 

this particle became classical. 

3.2 Environment Induced Decoherence and the measurement problem 

The measurement problem is a central interpretive issue for quantum mechanics. When the 

measurement of a property is performed on a quantum system, although the system is in a 

superposition state, the reading of the apparatus is a well-defined value. This fact has no adequate 

explanation in the framework of the theory.  

In the standard von Neumann model, a quantum measurement is conceived as an 

interaction between a system S  and a measuring device D . Before the interaction, D  is 

prepared in a ready-to-measure state 0r , eigenvector of the pointer observable R  of D , and the 

state of S  is a superposition of the eigenstates ia  of an observable A  of S . The interaction 

introduces a correlation between the eigenstates ia  of A  and the eigenstates ir  of R : 

 0 0i i i i i
i i

c a r c a rψ = ⊗ → ψ = ⊗∑ ∑  (1.10) 

The problem consists in explaining why, being the state ψ  a superposition of the i ia r⊗ , the 

pointer R  acquires a definite value. 

In the orthodox collapse interpretation, the pure state ψ  is assumed to “collapse” to a 

mixture cρ : 

 
2c

i i i i i
i

c a r a rρ = ⊗ ⊗∑  (1.11) 

where the probabilities 
2

ic  are given an ignorance interpretation. Then, in this situation it is 

supposed that the measuring apparatus is in one of the eigenvectors ir  of R , say kr , and 

therefore R  acquires a definite actual value kr , the eigenvalue corresponding to the eigenvector 

kr , with probability 
2

kc . 

The theory of decoherence attempts to reproduce the result expressed by eq. (3.3) but 

without invoking collapse. According to the usual view, after the interaction between the system 

and the apparatus, the composite system is in a superposition state: 

 
1

N

i i i
i

c a r
=

Ψ = ⊗∑  (1.12) 
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However, this expression only takes into account a single variable of the apparatus, which 

indicates the position of the pointer. According to EID, this is an extremely idealized 

simplification: a real measurement instrument is a macroscopic object composed of a huge 

number of atoms. Then, in a realistic description it is necessary to consider the internal degrees of 

freedom of the instrument and the interaction with the environment. Therefore, the initial state 

( 0t = ) of the composite system is 

 0
1

N

SME i i i
i

c a r
=

Ψ = ⊗ ⊗ ε∑  (1.13) 

Following the usual arguments of decoherence theory [3], we assume that the possible 

states for the environmentE  are { }jε , and that there is a particular interaction Hamiltonian 

between system, apparatus and environment. This interaction produces two important effects 

• The states of the three systems correlate with each other: 

 

1 1 0 1 1 1

2 2 0 2 2 2

0N N N N N

a r a r

a r a r

a r a r

⊗ ⊗ ε → ⊗ ⊗ ε

⊗ ⊗ ε → ⊗ ⊗ ε

⊗ ⊗ ε → ⊗ ⊗ ε
⋮

 (1.14) 

• The states of the environment become (approximately) orthogonal: 

 0i j|ε ε →  (1.15) 

According to the decoherence theory, the interaction produces both effects very fast. Then, the 

state of the whole system is: 

 *

, 1

ˆ
N

SME SME SME i j i i i j j j
i j

c c a r r a
=

ρ = Ψ Ψ = ⊗ ⊗ ε ε ⊗ ⊗∑  (1.16) 

Since the total system follows a unitary evolution, this state ̂ SMEρ  cannot evolve into a classical 

state. However, if we take the partial trace over the environmental degrees of freedom, we obtain 

the reduced state: 

 ( ) 2

1

ˆ ˆ
N

SM E SME i i i i i
i

Tr c a r r a
=

ρ = ρ = ⊗ ⊗∑  (1.17) 

According to the EID approach, ˆ
SMρ  represents a mixture state containing only the terms 

corresponding to the classical correlations and, therefore, it can be interpreted in terms of 



 9 

ignorance: the system SM is in one of the states k ka r⊗ , and the probability 
2

kc  measure our 

ignorance about the state of the system. 

The similarity between the expressions (3.9) and (3.3) suggests that decoherence leads to 

the same state obtained with the collapse hypothesis. According to Zurek, it is precisely the 

interaction between the system and its environment what produces an “illusion of a collapse” 

[13]. This suggests that decoherence is able to solve the measurement problem; in the words of 

Gennaro Auletta, “Decoherence is able to solve practically all the problems of measurement 

which have been discussed in the preceding chapters” [14]. 

3.3 Traditional problems of Decoherence 

As some point out [15 – 16], the theory of environment-induced decoherence has become the 

“new orthodoxy” in the quantum physicists community. However, the ability of decoherence to 

solve the problem of measurement has been widely discussed. Whereas many authors consider 

that decoherence has finally supplied the right answer to the measurement problem (see, e.g., [14] 

[17]), not all are so enthusiastic: the account of measurement given by the decoherence theorists 

has been severely criticized on the basis of different arguments (see, e.g., [18 – 19]). Many 

criticisms point to the implicit assumption that the reduced state obtained in the process of 

decoherence is equivalent to a classical mixture. 

The collapse hypothesis establishes that the state of the system non-unitarily turns into one 

of the states of the superposition. As a consequence, the system acquires a well-defined value of 

the measured observable. Therefore, if we repeat the measurement, we can make statistical 

calculations on systems with well-defined values: this means that, after measurement, the system 

is represented by a statistical operator as that of the expression (3.3), which is a classic mixture 

where the probabilities can be interpreted by ignorance. The case of decoherence is completely 

different, since collapse does not occur but, as Zurek says, the state appears to have collapsed. So, 

the system does not acquire a well-defined value for the measured observable: the state SMEΨ  is 

a superposition at any times. For instance, Adler claims that the diagonalized reduced state ˆ
SMρ  

does not allow us to say that the state of the system S  is in one of the eigenstates ir  of the 

observable ̂R , and he concludes: “I do not believe that either detailed theoretical calculations or 
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recent experimental results show that decoherence has resolved the difficulties associated with 

quantum measurement theory” ([20], p. 135). 

According to Bub [16], if the eigenstate-eigenvalue link is accepted, the problem is even 

worst: the reduced state is not only unable to explain the occurrence of only one of the 

eigenvalues ir  of R̂ , but it is also inconsistent with that occurrence, since the state of the 

composite system S E+  is always the entangled state SEψ . Indeed, if we interpret the reduced 

state ̂ SMρ  in terms of ignorance we are forced to admit that the observable has definite value. On 

the other hand, according to the eigenstate-eigenvalue link, an observable has defined value if 

and only if the system state is an eigenstate of the observable. But without collapse, the state of 

the entire system is always a superposition of the eigenstates of the observable. So the reduced 

state ̂ SMρ  not only fails to account for the occurrence of a single event associated with a definite 

value of the pointer, but actually is inconsistent with this occurrence. 

The origin of this difficulty of EID is rooted in the problem of quantum non-separability. In 

Schrödinger words  “When two systems, of which we know the states by their respective 

representatives, enter into temporary physical interaction due to known forces between them, and 

when after a time of mutual influence the systems separate again, then they can no longer be 

described in the same way as before, viz, by endowing each of them with a representative of its 

own” ([21], p. 555). However, EID is based on the features of reduced states, and it intends to 

describe the open system in the same way as closed systems are described. 

Perhaps the clearest (and certainly the most cited) explanation of the difference between the 

state of a closed system and the state of an open system is that offered by Bernard d'Espagnat in 

1966 [22]. He distinguishes between proper mixture, the state of a closed system, and improper 

mixture, the state of an open system, which is obtained by tracing off its environment. According 

to d'Espagnat (see also [4]), although proper and improper mixtures are represented by the same 

mathematical object, they denote different concepts. The state of the composite system is 

univocally determined by the reduced state of its components only in the particular case in which 

there are no correlations between these components. Therefore, if we can only make 

measurements on the open system of interest, but have no access to the environment, then we 
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would not be able to distinguish between an improper mixture and a proper mixture. But there is 

no theoretical reason that prevents us from having access to the traced off degrees of freedom. 

Such an access would allow us to show that the proper mixture and the improper mixture are, in 

principle, empirically different [4]. On this basis d'Espagnat claims that decoherence can account 

only for appearances, but not for the ontological realm [23]. 

These and similar arguments have led even some contributors to the decoherence program 

to express their skepticism about the relevance of decoherence to the solution of the measurement 

problem; as Joos ([24], p. 14) says: “Does decoherence solves the measurement problem? 

Clearly not.” Here we will argue that a way of understanding this last claim is to notice that, by 

contrast to Zurek's strategy, the reduced state of the decohering system S  must not be conceived 

as its quantum state. 

Moreover, although at present the EID approach has been applied to a wide range of 

models, and its results have many experimental confirmations (see [24]), it still nevertheless has 

to face three further conceptual difficulties: 

(a) it cannot be applied to closed systems, in particular, to the universe; according to 

Zurek, the issue of the classicality of closed systems or of the universe as a whole 

cannot even be posed (see [25], p.181); 

(b) it does not supply a criterion for deciding where to place the cut between system 

and environment; as Zurek himself admits, this is a serious problem for the 

foundation of the whole EID program (see [26], p.22); 

(c) it does not provide a simple general definition of the pointer basis (see [27-28]). 

4.  Decoherence in the whole and the parts 

The solution of the problem of the classical limit of quantum mechanics amounts to accounting 

how a quantum system behaves as a classical one. Then, if the aim is to explain the classical limit 

by means of decoherence, it is necessary to identify the systems involved in the decoherence in 

an objective way. Given a closed system, the application of the EID formalism requires to 

establish a cut between system and environment. If we consider that the reduced state represents 
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the system that becomes classical, then this state must be unique; otherwise, the objectivity of the 

classical world would be lost.  

In spite of its impressive practical success, from a conceptual viewpoint the EID approach 

still faces a difficulty derived from its open-system perspective: the problem of defining the 

system that decoheres. Zurek concedes that this absence of a general criterion to discriminate 

between system and environment is a serious difficulty of his proposal: “In particular, one issue 

which has been often taken for granted is looming big, as a foundation of the whole decoherence 

program. It is the question of what are the "systems" which play such a crucial role in all the 

discussions of the emergent classicality. This issue was raised earlier, but the progress to date 

has been slow at best” (see [26], p.122; for a discussion of this point, see [29]). 

In this section we will show the problem in a concrete example. Different cuts between 

system and environment lead to different classical systems. This shows that the use of the 

reduced state in the classical limit problem brings new conceptual problems. 

4.1 A generalized spin-bath model 

This is a generalization of the very simple model that has been exactly solved in previous papers 

[30] [31] [32] [33] [34]. Let us consider a closed system U A B= ∪  where:  

(i) The subsystem A  is composed of M  spin-1/2 particles iA , with 1 2i , , ,M= ⋯ , 

each one of them represented in its Hilbert space 
iAH : in each iA , the two 

eigenstates of the spin operator 
iA ,v

S �  in direction v
�

 are i⇑  and i⇓ .   

(ii)  The subsystem B  is composed of N  spin-1/2 particles kB , with 1 2k , , ,N= ⋯ , 

each one of them represented in its Hilbert space 
kBH : in each kB , the two 

eigenstates of the spin operator 
kB ,v

S �  in direction v
�

 are k↑  and k↓ .  

The Hilbert space of the composite system U A B= ∪  is, then, 

 
1 1

i k

M N

A B A B
i k= =

   = ⊗ = ⊗   
   
⊗ ⊗H H H H H  (1.18) 

and a pure initial state of U  reads 

 ( ) ( )0
1 1

M N

A B i i i i k k k k
i k

a b
= =

   ψ = ψ ⊗ ψ = ⇑ + ⇓ ⊗ α ↑ + β ↓   
   
⊗ ⊗  (1.19) 



 13 

with 
2 2 2 2

1i i k ka b+ = α + β = . As in the original spin-bath model, the self-Hamiltonians 
iAH  

and 
kBH  of the particles are taken to be zero, and there is no interaction among the particles iA  

nor among the particles kB . As a consequence, the total Hamiltonian A BH H H= ⊗  of the 

composite system U  is given by 

( ) ( )
1 11 1

1

2 j l

M NM N

i i i i A k k k k k B
j li k
j i l k

H I g I
= == =
≠ ≠

       
       = ⇑ ⇑ − ⇓ ⇓ ⊗ ⊗ ↑ ↑ − ↑ ↓ ⊗       

              

∑ ∑⊗ ⊗ (1.20) 

where 
jA j j j jI = ⇑ ⇑ + ⇓ ⇓  and 

lB l l l lI = ↑ ↑ + ↓ ↓  are the identity operators on the 

subspaces 
jAH  and 

lBH  respectively. Let us notice that the original model of [30] is the particular 

case of this generalized model for 1M = . 

 

 

 

 

 

 

 

 

 

 

Then, the state ( )tψ  is obtained as  

 ( ) ( )
0 0 0

A Bi H H tiHt
tt U e e− ⊗−ψ = ψ = ψ = ψ  (1.21) 

Figure 1. Schema of the interactions among the particles of the open system 
A (grey circles) and of the open system B (white circles): (a) original spin-

bath model (M = 1), and (b) generalized spin-bath model (M ≠ 1) 
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4.2 Decomposition 1 

We can consider the decomposition where A  is the open system S  and B  is the environment E . 

This is a generalization of the traditional spin-bath model. The only difference with respect to 

that case is that here the system S  is composed of 1M ≥  particles instead of only one. Then, 

here the decomposition is 

 
1 1

i k

M N

S E A B
i k= =

   
= ⊗ = ⊗   

   
⊗ ⊗H H H H H  (1.22) 

When the evolution of the reduced state is computed, two cases can be distinguished (see 

[33]): 

� Case (a): M N≪  

Numerical simulations show that there is decoherence. This means that, as 

expected, a small open system S A=  of M  particles decoheres in interaction with 

a large environment E B=  of N M≫  particles. 

� Case (b):   or  M N M N≫ ≃  

Numerical simulations show that there is no decoherence. This means that, when 

the environment E B=  of N  particles is not large enough when compared with 

the open system S A=  of M  particles, S  does not decohere. 

4.3 Decomposition 2 

In this case we decide to observe only one particle of the open system A . This amounts to 

splitting the closed system U  into two new subsystems: the open system S  is, say, the particle 

MA  and the environment is ( ) ( ) ( )1 1
1 1 1

M M N
i i i i k kE A B A B− −
= = == ∪ = ∪∪ ∪ ∪ . Let us notice that the 

Decomposition 2 of the traditional spin-bath model is a particular case of this one, for 1N =  

(where N  plays the role of the M  of this case). The decomposition here is 

 ( )
1

1 1
M i k

M N

S E A A B
i k

−

= =

    = ⊗ = ⊗ ⊗    
    
⊗ ⊗H H H H H H  (1.23) 

When the evolution of the reduced state is computed, numerical simulations show that, if 

1N ≫ , there is decoherence. This means that the particle MA  decoheres when 1N ≫ , 
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independently of the value of M . But since the particle MA  was selected conventionally, the 

same argument holds for any particle iA  of A . Then, when 1N ≫  and independently of the 

value of M , any particle iA  decoheres in interaction with its environment E  of 1N M+ −  

particles. On the other hand, the symmetry of the whole system U  allows us to draw analogous 

conclusions when the system S  is one of the particles of B : when 1M ≫  and independently of 

the value of N , any particle kB  decoheres in interaction with its environment E  of 1N M+ −  

particles. 

4.4 Analyzing results 

Let us consider the generalized spin-bath model when 1M N≃ ≫ . In this case, the subsystem 

1
M
i iA A== ∪  does not decohere (Decomposition 1), but the particles iA , considered independently, 

do decohere (Decomposition 2). In other words, in spite of the fact that certain particles decohere 

and may behave classically, the subsystem composed by all of them retains its quantum nature. 

We have also seen that, since 1M ≫ , all the particles kB , considered independently, decohere. 

Then, in this case not only all the iA , but also all the kB  decohere. This means that all the 

particles of the closed system ( ) ( )1 1
M N
i i k kU A B= == ∪∪ ∪  may become classical when considered 

independently, although the whole system U  certainly does not decohere and, therefore, retains 

its quantum character. 

The fact that certain particles may be classical or quantum depending on how they are 

considered sounds paradoxical in the context of an approach that explains decoherence as the 

result of an interaction between open systems. This apparent paradox is rooted in the 

interpretation of the reduced state as a legitimate quantum state. The open-system approach not 

only leads to the problem of deciding where to place the cut between system and environment, 

but in a certain sense also disregards the well-known holism of quantum mechanics: a quantum 

system in not the mere collection of its parts and the interactions among them. In order to retain 

its holistic nature, a quantum system has to be considered as a whole. For this reason, in the next 

section we introduce a description of decoherence from the closed-system perspective 
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5.  The study of expectation values as an alternative to the study of the state in EID 

Although the EID approach is based on the study of the diagonalization of the reduced state, it is 

also possible to analyze the quantum-to-classical transition at the level of expectation values. For 

simplicity, we will consider the case of systems with discrete energy spectrum; nevertheless, the 

same considerations can be done in the continuous case.  

According to classical statistics, we can compute the expectation value of an observable O  

by summing the possible values of this observable weighed with probability of being measured. 

If those possible values are Nooo ,...,, 21 , { }Nooo ,...,, 21=Ω  is the space of possible events, and iP  

is the probability to measure io , then the expectation value is 

 i i
i

O o P=∑  (1.24) 

However, the expectation values of quantum mechanics have a different structure. The 

expectation value of an observable Ô  in the state ρ̂  is given by 

 
ˆ

,

ˆ
ij ji

i j

O O
ρ

ρ=∑  (1.25) 

In this expression we can distinguish the term resulting from the diagonal components of Ô  and 

ρ̂ , and the term resulting from the non-diagonal components: 

 
ˆ

ˆ
ii ii ij ji

i i j

O O O
ρ

ρ ρ
≠

= +∑ ∑  (1.26) 

The diagonal elements  iii OO =  of the observable Ô  appear in the first sum, which could be 

interpreted as values to be measured multiplied by the diagonal elements iiρ  of the state operator, 

that precisely correspond to the probabilities iii PP =  assigned by the Born rule. That is, 

 
ˆ

ˆ
i i ij ji

i i j

O O P O
ρ

ρ
≠

= +∑ ∑  (1.27) 

Then we obtain two sums. One of them includes the contributions of the diagonal components of 

Ô  and ρ̂ , 

 D
i i

i

O PΣ =∑  (1.28) 

The other sum includes the contributions of the non-diagonal components of Ô  and ρ̂ , 
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 ND
ij ji

i j

O ρ
≠

Σ =∑  (1.29) 

It is not difficult to see that DΣ  has the structure of a classical expectation value. On the 

other hand, NDΣ  does not have this structure since, for example, jiρ  may be a non-positive 

number. Thus, the term NDΣ  is an obstacle to interpret the quantum expectation value as a 

classical expectation value. That fact is reasonable because otherwise there would be nothing 

special about quantum mechanics. The sum NDΣ  embodies the most curious characteristic of 

quantum mechanics: the phenomenon of interference. For this reason, we call the terms of NDΣ  

‘interference terms’. As a consequence, any attempt to find a limit between quantum statistics 

and classical statistics should include a process by which the interference terms disappear in the 

expectation values, i.e., 

 0NDΣ →  (1.30) 

We will call this process ‘decoherence’. Thus it is possible build the following scheme: 
 

 

ˆ

ˆ

ˆ

ˆ ~ quantum  statistics

decoherence

ˆ             

interpretation

ˆ ~ classical  statistics

D ND

D

i i
i

O

O

O o P

ρ

ρ

ρ

= Σ + Σ

↓

↓

= Σ

↓

=∑

  (1.31) 

At this point it is convenient to make an observation related with the orthodox approach to 

decoherence. The condition to obtain the limit between classical and quantum statistics is that, 

after a certain time, 0=ΣND . This is particularly true when the state operator is diagonal. In fact, 

when all the observables of the system are considered,  

(i) if ρ̂  is diagonal, then the interference terms of the expectation values of all the 

observables disappear, and 
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(ii)  if the interference terms of the expectation values of all the observables disappear, 

then ρ̂  is diagonal. 

This means that, when we consider all observables, the study of decoherence can undertaken 

from two equivalent points of view: 

a. By studying the diagonalization of the state. 

b. By studying the vanishing of the interference terms from the expectation values. 

5.1 Decoherence from the closed-system perspective 

As emphasized by Omnés [35], decoherence is just a particular case of the general problem of 

irreversibility in quantum mechanics. The problem of irreversibility can be roughly expressed in 

the following terms. Since the quantum state ˆ( )tρ  follows an unitary evolution, it cannot reach a 

final equilibrium state for t → ∞ . Therefore, if the non-unitary evolution towards equilibrium is 

to be accounted for, a further element has to be added to the unitary evolution. From the most 

general viewpoint, this element consists in the splitting of the maximal information about the 

system into a relevant part and an irrelevant part: whereas the irrelevant part is disregarded, the 

relevant part is retained and its evolution may reach a final equilibrium situation.  

This broadly expressed idea can be rephrased in operator’s language. The maximal 

information about the system U is given by the space O  of all its potentially possible observables. 

By selecting a particular subset RO  of this space, we restrict the maximal information to a 

relevant part: the expectation values 
ρ̂

ˆ
RO  of the observables belonging to R ⊂O O  express the 

relevant information about the system. Of course, the decision about which observables are to be 

considered as relevant depends on the particular purposes in each situation; but without this 

restriction, irreversible evolutions cannot be described. A frequent choice of ˆR RO ∈O  is the one 

that splits the closed system U, represented in H , into two open subsystems S and E, represented 

in SH  and EH  respectively, such that ESU ∪= . In this case: 

 ˆ ˆ ˆ
R S EO O I= ⊗  (1.32) 

where EÎ  is the identity of E E⊗H H , and ˆS S SO ∈ ⊗H H  is an observable of the system S. Since 

the identity EÎ  is the only observable of the subsystem E considered in this case, it is clear that 
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RÔ  only provides information about S. Therefore, the expectation values 
)(ˆ

ˆ
tRO

ρ
 give only an 

account of the relevant part of the system. It is also essential to notice that, in principle, the 

decision about which are the relevant observables, i.e. those considered of interest, depends on 

the purpose of each situation. 

On the basis of the concepts presented in the above paragraph, now we can describe the 

phenomenon of decoherence in general terms. The vanishing of the non-diagonal terms NDΣ  of 

the expectation value can be analyzed from the closed-system perspective by means of the 

expectation values. Given an initial state )0(ρ̂  and the relevant observables belonging to R ⊂O O , 

decoherence takes place when 0)( →Σ tND . This does not mean that the state operator becomes 

diagonal, but only that there are no interference terms for all the relevant observables. In other 

words, we can say that the initial state )0(ρ̂  evolves as )(ˆ tρ  and, after a time Dt  called 

‘decoherence time’, the non-diagonal terms of the expectation values vanish.  

This way of defining decoherence is different from the orthodox one, but includes it. In fact, 

when we select the relevant observables of the form ESR IOO ˆˆˆ ⊗= , then requiring that the 

interference terms disappear from the expectation value is equivalent to requiring that the reduced 

state operator of the system is diagonal: 

(i) when Sρ̂  is diagonal, the interference terms disappear from the expectation 

values of all the relevant observables, and 

(ii)  if the interference terms disappear from the expectation values of all the relevant 

observables, then Sρ̂  is diagonal. 

Nevertheless, when we select the relevant observables otherwise, the equivalence is lost. The 

closed-system approach leads to a more general framework for decoherence. In particular, it 

allows us to define the decoherence of groups of observables that do not have an associated state 

operator. 

5.2 The General Theoretical Framework for Decoherence 

In previous works we have analyzed the common characteristics of the different approaches of 

decoherence. The result of this analysis suggests the possibility of formulating a general 
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framework for decoherence, such that those particular approaches can all be framed in it (see [29], 

[34], [36] and [37]). According to this general framework, which was developed in [36] and will 

be completed in future papers, decoherence is just a particular case of the general problem of 

irreversibility in quantum mechanics. Once the essential role played by the selection of the 

relevant observables is clearly understood, the phenomenon of decoherence can be explained in 

four general steps: 

1. First step: The space R ⊂O O  of the relevant observables is defined. 

2. Second step: The expectation value 
R

RO
ρ̂

ˆ , for any ˆR RO ∈O , is obtained. This step can 

be formulated in two different but equivalent ways: 

a. A coarse-grained state )(ˆ tRρ  is defined by 

 
ˆ ˆ( ) ( )

ˆ ˆ
R

R R
t t

O O
ρ ρ

=  (1.33) 

for any ˆR RO ∈O , and its non-unitary evolution governed by a master equation is 

computed (this step is typical in EID). 

b. 
)(ˆ

ˆ
t

RO
ρ

 is computed and studied as the expectation value of RÔ  in the state )(ˆ tρ . 

This is the generic case for other formalisms. 

3. Third step: It is proved that 
)(ˆ)(ˆ

ˆˆ
t

R
t

R
R

OO
ρρ

=  reaches a final equilibrium value 
*ˆ

ˆ
ρRO . 

Then, 

 
ˆ ˆ( ) *

ˆ ˆlim R R
t t

O O
ρ ρ→∞

=      ˆ
R RO∀ ∈O  (1.34) 

This also means that the coarse-grained state )(ˆ tRρ  evolves towards a final equilibrium 

state: 

 
*ˆ)(ˆ

ˆˆlim
RR

R
t

R
t

OO
ρρ

=
∞→

      ˆ
R RO∀ ∈O  (1.35) 

The characteristic time for these limits is Rt , the relaxation time. 

4. Fourth step: We decompose the expectation values into the classical part and the 

interference part, and we study whether the interference terms disappear. In this case, it is 

proved that 
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ˆ

ˆ
i i

i

O O P
ρ

→∑  (1.36) 

The characteristic time for this limit is the Dt , the decoherence time. 

The limits of the third and the fourth steps mean that, although the off-diagonal terms of )(ˆ tρ  

never vanish through the unitary evolution, the system decoheres from an observational point of 

view, that is, from the viewpoint given by any relevant observable ̂R RO ∈O . 

From this general perspective, the phenomenon of destructive interference, which produces 

decoherence, is relative, because the off-diagonal terms of )(ˆ tρ  and )(ˆ tRρ  vanish only from the 

viewpoint of the relevant observables ˆ
R RO ∈O . The essential difference between EID and other 

formalisms for decoherence is the selection of the relevant observables (see [36] for details). In 

fact, in EID approach the relevant observables are those that can be expressed as: 

 ˆ ˆ ˆ
R S EO O I= ⊗  (1.37) 

where the ˆ
SO  are the observables of the system and ˆ

EI  is the identity operator of the 

environment. Then, eq. (5.10) reads: 

 
ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ
R S

R R S
t t t

O O O
ρ ρ ρ

= =     where ( )ˆ ˆ( ) ( )S Et Tr tρ ρ=  (1.38) 

In the other formalisms, different restrictions in the set of observables are introduced. 

5.3 The measurement problem from the closed system perspective 

When the measurement process is studied from the point of view of the closed system, the system 

to be measured and the measuring apparatus form a complete quantum system, in which the 

identification of subsystems is not necessary. Instead, there are observables of the form MS IO ˆˆ ⊗  

linked to the degrees of freedom of interest (the system of interest in EID). On the other hand, 

there is an observable ˆ ˆ
S MI R⊗  linked to the degrees of freedom of the pointer. As in Section 3.2, 

the interaction introduces a correlation between the eigenstates ia  of A  and the eigenstates ir  

of R : 

 0 0i i i i i
i i

c a r c a rψ = ⊗ → ψ = ⊗∑ ∑  (1.39) 
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Now the problem can be reinterpreted from the new general framework for decoherence. 

After measurement, and considering the interaction with the environment, the complete whole 

system is in the superposition state 

 *

, 1

ˆ
N

SME SME SME i j i i i j j j
i j

c c a r r aρ ε ε
=

= Ψ Ψ = ⊗ ⊗ ⊗ ⊗∑  (1.40) 

However, if we select the relevant observable of the form 

 
1

ˆ ˆ ˆ
N

R S i i i E
i

O I r r r I
=

= ⊗ ⊗∑  (1.41) 

the expectation value takes the following form 

 
2

ˆ
1

ˆ
SME

N

R i i
i

O c r
ρ =

=∑  (1.42) 

where the ir  are the possible values of pointer, 
2

1ic <  and 
2

1

1
N

i
i

c
=

=∑ . Thus, we obtain a 

expectation value with a classical structure. If we only consider the expectation values of the 

relevant observable, there is no way that an experiment reveals a difference between the 

expectation values of the expression (5.19) and the expectation values that would be obtained if 

the state of the system were a true classical mixture. Therefore, the new approach of decoherence 

can explain why, if you perform a series of measurements, the expectation values adopt a 

classical structure. However, as the only state that we consider is the state of the whole closed 

system, this case is free from the conceptual difficulties of the EID approach. 

5.4 The appearance of the classical world 

As we have noticed above, the Correspondence Principle establishes that it should be 

possible to recover the laws of classical mechanics from the quantum laws. Historically, the aim 

was to try to transform a diagonal quantum state ρ̂  into a state ( , )p qρ  of classical statistical 

mechanics. In this sense, the new approach for decoherence clearly shows that the quantum 

character of a system never vanishes: closed systems evolve always unitarily and, therefore, any 

kind of limit is explicitly impossible. In particular, the non-unitary evolution of the reduced state 

ˆ
Sρ  is nothing else but a compact way of expressing the time evolution of the expectation values 

of the relevant observables. 
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However, the new approach is able to explain the appearance of the classical world as 

presented to the experience. When we select certain set of relevant observables R ⊂O O , and we 

verify that for them there is decoherence, then the quantum-classical transition occurs at the level 

of the expectation values 
ˆ

ˆ
RO

ρ
, but not in the state. This means that the system behaves 

classically from an observational point of view. Classicality manifests itself or not, depending on 

the relevant observables under consideration. [31]. 

5.5 The generalized spin-bath model from the closed system perspective 

Now we can analyze the spin-bath model from the closed-system perspective. The closed system 

U A B= ∪  is associated with a state ( )tψ , which is the only legitimate quantum state. 

In Decomposition 1, the EID approach conceives A  as the open system S , and B  as the 

environment E . In our framework, this case corresponds to selecting the relevant observables 

RÔ  of U  of this form: 

 
1

N

R S E A i
i

O O I O I
=

 
= ⊗ = ⊗  

 
⊗�  (1.43) 

When the expectation values ( ) ( )d nd
R t

O tψ = Σ + Σ  of the observables RO  in the state ( )tψ  

are computed (se eq.(4.4)), two cases can be distinguished (see [33] and [31]): 

� In Case (a), N M≫ : Numerical simulations show that ( ) 0nd tΣ →  very fast for 

increasing time. This means that the observables given by (5.20) decohere when 

N M≫ . 

� In Case (b),   or  M N M N≫ ≃ : Numerical simulations show that ( )nd tΣ  

exhibits an oscillating behavior. This means that the observables given by (5.20) 

do not decoheres when   or  M N M N≫ ≃ . 

In Decomposition 2 the EID approach conceives MA  as the open system S , and 

( )1
1

M
i iA B−
= ∪∪  as the environment E . In our framework, this case corresponds to selecting the 

relevant observables RÔ  of U  of this form:  

 
1

1 1
M

M N

R S E A i k
i k

O O I O I I
−

= =

    = ⊗ = ⊗ ⊗    
    
⊗ ⊗�  (1.44) 
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When the expectation values ( ) ( )d nd
R t

O tψ = Σ + Σ  of the observables RO  in the state ( )tψ  

are computed (see eq.(4.4)), numerical simulations show that, if 1N ≫ , then ( ) 0nd tΣ →  very 

fast for increasing time (see [33] and [31]). This means that the observables given by (5.21) 

decohere when 1N ≫ . 

When we adopt this closed-system perspective, it turns out to be clear that there is no 

essential criterion for identifying the “open system” and its “environment”. Some observable 

decoheres and others not. As the only legitimate quantum system is a closed system, the problem 

of splitting the whole system into system and environment, which challenges the EID approach, 

simply disappears. 

6.  Conclusions 

In this paper we have studied the properties of open systems and their ontological status. We 

have recalled that the ontological interpretations of a proper and an improper mixture are very 

different: although ̂ρ  and ˆRρ  have similar mathematical structure, they do not refer to the same 

physical entity. Then, we considered how the reduced states of open systems are used in the 

phenomenon of decoherence in two different cases: the measurement process and those situations 

where the whole closed system can be split into an open system of interest and its environment in 

different ways. In the first case we have argued that, since the reduced state cannot be interpreted 

as a proper mixture, decoherence does not solve the measurement problem. In the second case we 

showed that the lack of a criterion to identify the open system and its environment is a 

manifestation of the relative nature of decoherence, and prevents us from conceiving the open 

system as a physical entity of the same ontological status as that of the closed system. Finally, we 

proposed a formalism designed to study the phenomena of relaxation and decoherence from a 

closed-system perspective. Since this formalism does not resort to reduced states, it avoids the 

interpretive problems that threaten the EID approach. 
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