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1. Introduction

In the textbooks on quantum mechanics, the laviketheory are presented as applied to closed
guantum systems. The state of a closed quanturansystis represented by a density operator
£, and its unitary time evolution is governed by 8ehrodinger equation. However, although
there is no universally accepted and definitiverptetation of the formalism, certain ideas lead
us to carefully consider the concept of quantuntesysIn fact, the study of phenomena such as
relaxation and decoherence requires the introduatiothe notion of open system, that is, a
quantum system in interaction with other quantusteys.

In general, the subsystems of a closed sydfeinteract with each other. The state of each
one of these subsystems is represented by a redpeedtoro,, obtained from the statg of
the total systemd by means of the mathematical operation cafladial trace The reduced
operator 9, of a subsystem allows us to compute the expeatatitue of all its observables. For
this reason, the usual practice is to conceive gpdgystems as legitimate quantum systems (for
example, a particle), represented by their corneding reduced state®,, whose evolution is
not ruled by the Schrodinger equation. For thisoeaan open quantum system can follow non-
unitary evolutions, such as relaxation and decaotoer§l].

Decoherence is a process originally proposed tétagxthe diagonalization of the reduced
operator [2]. The orthodox approach considers thstesn under study embedded in an
environment that induces decoherence; tieenjronment-induced decoheren@lD) may only
occur in open systems. According to this approaaker certain conditions the reduced state of
an open system becomes diagonal, and this factsnadssible its interpretation as a classical
state [3]. Thus, decoherence allows us to studyttamtum-to-classical transition of a quantum
system, for instance, a quantum patrticle.

In this paper we will study the properties of opgystems, and we will discuss their

ontological status. First, we will compare the nemtlatical properties of the quantum state with



those of the reduced state. Following the road egdry Bernard d'Espagnat [4], we will argue
that, althoughp and p, have similar mathematical structures, they catweointerpreted in the
same way. In a second stage, we will study the gmenon of decoherence in situations where
the whole closed system can be split into an opstesy of interest and its environment in
different ways [5 - 6]. In particular, we will shothat the lack of an univocal criterion to define
the open system and its environment is a manifeataf the relative nature of decoherence; this
fact prevents us from conceiving the open systema physical entity of the same ontological
status as that of the closed system. Finally, erbtisis of previous results [7], we will present a
formalism designed to study the phenomena of rélaxand decoherence from a closed-system
perspective. Since this formalism does not resoretluced states, it avoids certain interpretive
problems that arise in the orthodox approach. A®m@sequence, we conclude that, given the
problems of interpretation derived from the useesfuced states, the notion of open quantum
system should be avoided. According to this viewpdhe only legitimate quantum system is the
whole closed system with its unitary evolution, ahe study of its dynamical properties is

sufficient to describe the phenomena of decoherandeelaxation.

2. Statesand expectation valuesin quantum mechanics

According to the formalism of quantum mechanicg; aystem has an associated state operator
p(t) that carries all the possible information abowet $fystem. The mathematical representation
of the state belongs to the Liouville spa€e The evolution of the state is given by the Lidkavi

von Neumann equation [1]:
P®-114,p] (L.1)

whereH is the Hamiltonian of the system. Every physicalperty of the system is represented
by a specific observabl® belonging to the dual space 6f, £'. In order to compute quantities
of physical interest, algebraic operations havbdaapplied to these operators. For example, the
expectation value of the property representedfib)for a system in stat@, is computed as the

trace of the product of the two corresponding ojoesd 8]:



<O>p = Tr(pé) (1.2)

In the case of systems that are not compositeg tiseno substantial difference between

knowing the state and knowing the expectation \&abfell the observables of the system:

(i) given the state, the expectation value of any ofadde can be computed, and

(i) given the expectation value of any observable,stia¢e of the system can be

computed.

In this non-composite case, it is usual to workthe context of a state-based description.

Nevertheless, it is worth recalling that, given thature of quantum mechanics, all the

information of physical interest is given througtpectation values.

In the case of composite systems, the initial sthtdhe whole system is computed as the

tensor product of the states of its subsystems. iRstance, in a two-particle system, the

procedure is the following one [9]:

We consider that the two particles are initiallgependent (
simple systems): particle 1 in the st@ig€0) and particle 2 in the stai@,(0).

We assume that, at a certain time, the two pastioégin to interact with each other and, since

then, they are considered parts of a compositesyathose initial state ig, (0).

We compute the initial state of the composite sysbyy means of the tensor product of the
original particle’s initial statesp,(0) O p,(0) = p, (0).
At the initial time, the state of each particle da@ recovered by means of the algebraic
operation of partial trace, which consists in tngc{deleting) the degrees of freedom of the
other particle:

£0)=Tr,(£,(0) and p,(0) =T, (£, (0))
The total state of system evolves, as any quantiate,saccording to the Liouville von

Neumann equation:

dp,(t) _ 1

= 1,6, (1.3)



2.1 The open-system perspective
In many physical problems it is useful to take Uye tidea of individual particles as the
components of the total system. This idea is sugdey the fact that, at the initial time, the
partial trace onto the total state of the closextesy yields the state of each component particle.
However, the generalization of this procedure fbtimes is, at least, controversial.

Once the total closed system has been identifteelyolves as a whole according to the
Liouville-von Neumann equation governed by theltbtamiltonian. Nothing prevents us to take
the partial trace of the evolved total state, olitey a mathematical entity calledduced state

that has the appearance of a quantum state:

A1) = Tr, (. (1)) (1.4)
But this reduced statdoes not evolve according to the Liouville-von Nenmequation
apg,(t) , 1 .
L | H t 15
L= () (1.5)

The dynamics of the reduced state is ruled by aumitary master equation, different in each
particular problem. However, it is common to assuiha the particle 1 can be reidentified in the
composite system, i.e., that it is a quantum systalthough not obeying the Liouville-von
Neumann equation) represented by the reduced stiageator o, (t) . What supports this
assumption is the fact that, although the evolutidrthe reduced state is not ruled by the
Liouville-von Neumann equation, given any obsereaﬁll of the patrticle 1, its expectation value

can be computed as:

@), =Tr(6,40)) (1.6)
This means that the expectation values of the whbbrs corresponding to particle 1 are
computed in the same way as in the case of cloggdrmas, but using the reduced state operator
p,(t) instead of the total state. Those expectationeglare all the information that can be

obtained when one has experimental access onlgrtle 1.

2.2 The closed-system perspective

Although we may be interested in studying the bedranf the different parts of a closed system,



the concept of reduced state is controversial, 'Bspdgnat showed in his already classical
arguments [4]. For this reason, we will show tha$ not necessary to resort to reduced states for
describing the behavior of the parts of a closexdesy.

The closed-system perspective allows us to studyetiolution of the different degrees of
freedom in a closed system by considering the d@&pien values of the corresponding relevant

observables. Indeed, if we consider observablasattitaonly on the system of interest (particle 1):

A

O, =001, (1.7)

Whereél is any observable of particle 1 a:ﬁg is the identity of the space of observables of

particle 2, then we can compute the expectationegabf these observables as follows:

(6:), , =Trl62:0)=Tr(6,07. )5 0)=Tr(6,000)=(6)) (1.8)

Ar(t)
This last expression tells us that it is not neagsso define the reduced state, nor even to
mention the particle 1. We can obtain the exp&mnat/ialues<él>pl(t), i.e. the information of
interest, by studying the behavior of the statethwd closed systenp;(t) and the relevant
observableg of the closed system.

This shows that, in the case of composite systémese is no difference between knowing
the reduced state and knowing the expectation sadfi@ll the relevant observables of the form
éR = él 0] fz:

(i) given the reduced state of the particle, the egpiect value of any relevant

observable can be computed, and

(ii) given the expectation value of any relevant obd#eyahe reduced state of the

particle can be computed.
Therefore, in this case the state-based descripfitime particle is not necessary: its behavior can

be accounted for from the perspective of the whteed system.

3. Reduced statesin decoherence

The Correspondence Principle establishes that auldhbe possible to recover the laws of

classical mechanics from those of quantum mechali@s One way to establish the link



between both theories is through the theory oflalye deformations [11 -12], whereby it is

possible to “deform” an algebra to turn it into #rer, through some operator. By means of this
theory it is possible to transform the quantumesgatinto a distributionp(q, p) in phase space.

Physicists aim to interpret this function as a ptmlity distribution in phase space (a state
p(q, p) of classical statistical mechanics), which sets ghobability that the system has a well
defined position-momentum classical pair. But focarect operation of this procedure, it is
necessary a diagonal quantum state For this reason, decoherence is a process diigina

designed to explain the diagonalization of theestat

3.1 Environment Induced Decoherence

In the context of the orthodox versidanvironment Induced Decoheren@&D), the formalism

of decoherence applies only to open systems becasses name suggests, the syst&mmder
study is considered embedded in an environr&emhich induces decoherence [3]. The sys&m

is an open system with an associated Hilbert sffaceand the environment is an open system
with an associated Hilbert spa@¢,. The corresponding von Neumann-Liouville spaces ar
Ly ="Hy OHy and £, =H, OH, . According to the EID approach, the study of decehce is
based on the study of the evolution of the redustatle represented in a given basis. Either
explicitly computing the statég(t) or analyzing case by case the master equationcame
determine whether, under certain conditions, tldeiced state operator becomes diagonal or not.
The non-diagonal terms of the state are linkedvemts that do not have a classical analogue. For
this reason it is usually said that, when the sketeomes diagonal, it represents the classical
aspects of the system (to complete the classicad We must also apply the Wigner transform

and7i—0). In many models with a huge number of degredeseefiom, it is shown that:

lim ps(t) = () diagonal (1.9)
t

- 'D

According to the EID approach, since after a depaiee timetp the operatorpg(t)
becomes diagona@(SD) (t), then there is a process of decoherence inducégebgrge number of
degrees of freedom of the environment. This is\eant to think thafog(t) represents the state

of a part of the total system, and that this padadme classical. In general, this part is integaret



as a patrticle. Since the state became diagonalegmesents a particle, then it is usually said that

this particle became classical.

3.2 Environment Induced Decoherence and the measimeproblem

The measurement problem is a central interpretsgeid for quantum mechanics. When the
measurement of a property is performed on a quardgystem, although the system is in a

superposition state, the reading of the apparatasaell-defined value. This fact has no adequate
explanation in the framework of the theory.

In the standard von Neumann model, a quantum measmt is conceived as an
interaction between a syste® and a measuring devicP . Before the interactionD is
prepared in a ready-to-measure stag)e, eigenvector of the pointer observaliteof D, and the
state ofS is a superposition of the eigenstaltxgs} of an observabléA of S. The interaction

introduces a correlation between the eigensfaesof A and the eigenstat¢g) of R:
[Wo)=2.¢la)0]K) ~ [W)=2.6[a)0]r) (1.10)
| |

The problem consists in explaining why, being ttated ) a superposition of theg,) 0| ), the
pointer R acquires a definite value.
In the orthodox collapse interpretation, the putaedy) is assumed to “collapse” to a

mixture p°:
p° = l[*la) Ol r)(a|O(f| (1.11)

where the probabilitie{3g|2 are given an ignorance interpretation. Then, is Hituation it is
supposed that the measuring apparatus is in ortaeokigenvectordr;) of R, say|r), and
thereforeR acquires a definite actual valug the eigenvalue corresponding to the eigenvector
|r), with probability[c, |

The theory of decoherence attempts to reproducerabelt expressed by eq. (3.3) but
without invoking collapse. According to the usuaw, after the interaction between the system

and the apparatus, the composite system is inexjgogition state:

|“’>=Z:llc.|a>ﬂlr> (1.12)



However, this expression only takes into accourdirgle variable of the apparatus, which
indicates the position of the pointer. According EdD, this is an extremely idealized
simplification: a real measurement instrument isnacroscopic object composed of a huge
number of atoms. Then, in a realistic descriptida hecessary to consider the internal degrees of
freedom of the instrument and the interaction vifte environment. Therefore, the initial state

(t =0) of the composite system is
N
|LIJSME>=ZCi|ai>D|ri>D|€o> (1.13)
i=1

Following the usual arguments of decoherence th§8fywe assume that the possible
states for the environmekt are{‘e].>}, and that there is a particular interaction Haoni&n

between system, apparatus and environment. Thagaictton produces two important effects

» The states of the three systems correlate with etr:
|2)0]1) Oleo) ~ |y O[r)Oley
2,)0]5) Dles) ~ a0l e w1

|ay) D[ 1ry) Ole,) — [ay) Ofry) Oley)
e The states of the environment become (approximabetiiogonal:
(e1g) - 0 (1.15)

According to the decoherence theory, the interacfimoduces both effects very fast. Then, the

state of the whole system is:
N
Pove =|W s (¥ svd = D.C¢ Ja)0| r)Ole ><s j‘D<rj‘D<aj‘ (1.16)
ij=1
Since the total system follows a unitary evolutidnis stated,,,. cannot evolve into a classical
state. However, if we take the partial trace oherénvironmental degrees of freedom, we obtain

the reduced state:
N
Paw =Tre(Bave) = X Jc*|2) 0| ) (1| Oa 117)
i=1

According to the EID approachp,, represents a mixture state containing only thenser

corresponding to the classical correlations aneéyetiore, it can be interpreted in terms of



ignorance: the syste®M s in one of the statds, ) |r,), and the probabilityc,| measure our
ignorance about the state of the system.

The similarity between the expressions (3.9) an@)(8uggests that decoherence leads to
the same state obtained with the collapse hypahdsicording to Zurek, it is precisely the
interaction between the system and its environmérdt produces anillusion of a collapsé
[13]. This suggests that decoherence is able teedble measurement problem; in the words of
Gennaro Auletta, Decoherence is able to solve practically all thelgems of measurement

which have been discussed in the preceding chdfdtets

3.3 Traditional problems of Decoherence

As some point out [15 — 16], the theory of envire@mtinduced decoherence has become the
“new orthodoxy” in the quantum physicists communitiowever, the ability of decoherence to
solve the problem of measurement has been widslyudsed. Whereas many authors consider
that decoherence has finally supplied the rightv@ngo the measurement problem (s=g, [14]
[17]), not all are so enthusiastic: the accountnefisurement given by the decoherence theorists
has been severely criticized on the basis of differarguments (see.g, [18 — 19]). Many
criticisms point to the implicit assumption thattheduced state obtained in the process of
decoherence is equivalent to a classical mixture.

The collapse hypothesis establishes that the stdtee system non-unitarily turns into one
of the states of the superposition. As a consegjeghe system acquires a well-defined value of
the measured observable. Therefore, if we repeatnieasurement, we can make statistical
calculations on systems with well-defined valuéss tmeans that, after measurement, the system
Is represented by a statistical operator as th#teexpression (3.3), which is a classic mixture
where the probabilities can be interpreted by ignoe. The case of decoherence is completely
different, since collapse does not occur but, aglsays, the state appears to have collapsed. So,
the system does not acquire a well-defined valu¢hi® measured observable: the stﬂ-tg;AE> IS
a superposition at any times. For instance, Ad@ns that the diagonalized reduced sfagg
does not allow us to say that the state of theesyS is in one of the eigenstatfs) of the

observablef%, and he concludesl tlo not believe that either detailed theoreticalotilations or



recent experimental results show that decoherem@serésolved the difficulties associated with
guantum measurement thed(j20], p. 135).

According to Bub [16], if the eigenstate-eigenvalunk is accepted, the problem is even
worst: the reduced state is not only unable to @rpthe occurrence of only one of the
eigenvaluesr; of R, but it is also inconsistent with that occurrensice the state of the
composite systens+ E is always the entangled st4tﬂSE>. Indeed, if we interpret the reduced
statep,,, in terms of ignorance we are forced to admit thatobservable has definite value. On
the other hand, according to the eigenstate-eigeavak, an observable has defined value if
and only if the system state is an eigenstate efothservable. But without collapse, the state of
the entire system is always a superposition ofefigenstates of the observable. So the reduced
statepg,, not only fails to account for the occurrence diirsgle event associated with a definite
value of the pointer, but actually is inconsisterth this occurrence.

The origin of this difficulty of EID is rooted irhe problem of quantum non-separability. In
Schrédinger words When two systems, of which we know the states diy ribspective
representatives, enter into temporary physicalrextéon due to known forces between them, and
when after a time of mutual influence the systeeparate again, then they can no longer be
described in the same way as before, viz, by emdpeach of them with a representative of its
own’ ([21], p. 555). However, EID is based on the twas of reduced states, and it intends to
describe the open system in the same way as céyséeins are described.

Perhaps the clearest (and certainly the most ocieplpnation of the difference between the
state of a closed system and the state of an gsens is that offered by Bernard d'Espagnat in
1966 [22]. He distinguishes betweproper mixture the state of a closed system, amgroper
mixture the state of an open system, which is obtainettamyng off its environment. According
to d'Espagnat (see also [4]), although proper emgtaper mixtures are represented by the same
mathematical object, they denote different conceptse state of the composite system is
univocally determined by the reduced state of @gsgonents only in the particular case in which
there are no correlations between these compondiiterefore, if we can only make

measurements on the open system of interest, mat i@ access to the environment, then we

10



would not be able to distinguish between an impropeture and a proper mixture. But there is
no theoretical reason that prevents us from hasrgess to the traced off degrees of freedom.
Such an access would allow us to show that thegprnoyixture and the improper mixture are, in
principle, empirically different [4]. On this basi¥Espagnat claims that decoherence can account
only for appearances, but not for the ontologiealm [23].

These and similar arguments have led even someilmatiors to the decoherence program
to express their skepticism about the relevanaeobherence to the solution of the measurement
problem; as Joos ([24], p. 14) say®des decoherence solves the measurement problem?
Clearly not” Here we will argue that a way of understandihig fast claim is to notice that, by
contrast to Zurek's strategy, the reduced statheoflecohering systef@ must not be conceived
as its quantum state.

Moreover, although at present the EID approach been applied to a wide range of
models, and its results have many experimentalitoations (see [24]), it still nevertheless has

to face three further conceptual difficulties:

(a) it cannot be applied to closed systems, in padicub the universe; according to
Zurek, the issue of the classicality of closed esyst or of the universe as a whole

cannot even be posed (see [25], p.181);

(b) it does not supply a criterion for deciding wheveptace the cut between system
and environment; as Zurek himself admits, this iseaous problem for the

foundation of the whole EID program (see [26], p;22

(c) it does not provide a simple general definitiorira pointer basis (see [27-28]).

4. Decoherencein thewhole and the parts

The solution of the problem of the classical limitquantum mechanics amounts to accounting
how a quantum system behaves as a classical oeg, iflthe aim is to explain the classical limit
by means of decoherence, it is necessary to igeth& systems involved in the decoherence in
an objective way. Given a closed system, the agipdic of the EID formalism requires to

establish a cut between system and environmente Ifonsider that the reduced state represents

11



the system that becomes classical, then this stagt be unique; otherwise, the objectivity of the
classical world would be lost.

In spite of its impressive practical success, fronceptual viewpoint the EID approach
still faces a difficulty derived from its open-sgst perspective: the problem of defining the
system that decoheres. Zurek concedes that thenedsof a general criterion to discriminate
between system and environment is a serious diffi@f his proposal: Ih particular, one issue
which has been often taken for granted is loomigg &s a foundation of the whole decoherence
program. It is the question of what are the "systemhich play such a crucial role in all the
discussions of the emergent classicality. Thiseissas raised earlier, but the progress to date
has been slow at bégsee [26], p.122; for a discussion of this pos#e [29]).

In this section we will show the problem in a caterexample. Different cuts between
system and environment lead to different classgyatems. This shows that the use of the

reduced state in the classical limit problem bring& conceptual problems.

4.1 A generalized spin-bath model
This is a generalization of the very simple modelt thas been exactly solved in previous papers
[30] [31] [32] [33] [34]. Let us consider a clossgstemU = AL B where:
(i) The subsystermA is composed oM spin-1/2 particlesh, withi=12---,M,
each one of them represented in its Hilbert spige in eachA, the two
eigenstates of the spin operaEB)Ar‘~V in directionv are‘ﬂi> and‘Ui>.
(i) The subsystenB is composed ofN spin-1/2 particleB,, with k=1,2;--,N,
each one of them represented in its Hilbert sgege: in eachB,, the two
eigenstates of the spin opera&E{’«V in directionv are‘ 1 k> and‘ ! k> :

The Hilbert space of the composite systdms ALl B is, then,
M N
HZHADHBZ(DHAIJD[DHQJ (1.18)
i=1 k=1
and a pure initial state &f reads

o=l 0lwe) = [ (a]1) 814} o

i=1 k

1=z

(ak‘Tk>+Bk‘lk>)j (1.19)

1
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with [a | +|B|* =|a, | +|B|*=1. As in the original spin-bath model, the self-Huamiians H ,
and Hg of the particles are taken to be zero, and thereiinteraction among the particlés
nor among the particle8, . As a consequence, the total Hamiltonidr=H , U Hg of the

composite systertd is given by

M 1 M N N
H =20 SO E O, )2 (rdCnd-Trd(nd) o] Ore |} @20
i=1 j= =1 =
j#i 12k
where I , :‘ﬂj><ﬂj‘+‘Uj><Uj‘ and g I‘T|><T|‘+‘l|><l|‘ are the identity operators on the
subspacegi,Aﬁ andH, respectively. Let us notice that the original mauf¢30] is the particular

case of this generalized model fior =1.

</

A\\\'l”l;
7

(@ (b)

Figure 1. Schema of the interactions among thegbestof the open system

A (grey circles) and of the open systBriwhite circles): (a) original spin-
bath model = 1), and (b) generalized spin-bath modé&k 1)

Then, the statfy (t)) is obtained as

‘Lp(t» = Ut|Lp0> =e™™ |qu> = g '(HA0He) |llJ0> (1.22)
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4.2 Decomposition 1

We can consider the decomposition whéres the open syster§ and B is the environmenE.
This is a generalization of the traditional spirtbanodel. The only difference with respect to
that case is that here the syst@ms composed oM >1 particles instead of only one. Then,

here the decomposition is
M N
H:HSDHE:(DHAJD(DHaj (1.22)
i=1 k=1

When the evolution of the reduced state is computed cases can be distinguished (see
[33]):

» Case(a): M« N
Numerical simulations show that there is decohexenthis means that, as
expected, a small open syste&®x A of M particles decoheres in interaction with

a large environmenkE = B of N > M particles.

» Case(b): M>N or M=N
Numerical simulations show that there is no deceiez. This means that, when
the environmenE& = B of N particles is not large enough when compared with

the open systen$= A of M particles,S does not decohere.

4.3 Decomposition 2

In this case we decide to observe only one parbfléghe open systerd. This amounts to
splitting the closed systekd into two new subsystems: the open syst@ns, say, the particle
A, and the environment iE:( i'\il‘lAl)D B:(Ui"ﬂl‘1 A)D(Uk'\‘zla). Let us notice that the

Decomposition 2 of the traditional spin-bath mogeh particular case of this one, fr=1

(where N plays the role of thé/ of this case). The decomposition here is
M-1 N
H=HSDHE=(H®)D[(DHAJD[DH,P,D (1.23)
i=1 k=1

When the evolution of the reduced state is computacherical simulations show that, if

N>1, there is decoherence. This means that the parfigl decoheres wheN >1,

14



independently of the value dfl . But since the particlé, was selected conventionally, the
same argument holds for any particddeof A. Then, whenN >1 and independently of the
value of M , any particleA decoheres in interaction with its environmdatof N+ M -1
particles. On the other hand, the symmetry of thelessystenU allows us to draw analogous
conclusions when the systegis one of the particles @ : when M > 1 and independently of
the value ofN, any particleB, decoheres in interaction with its environméntof N+ M -1

particles.

4.4 Analyzing results

Let us consider the generalized spin-bath modelnwMe= N > 1. In this case, the subsystem
A:U{\ilA, does not decohere (Decomposition 1), but thegdestii , considered independently,
do decohere (Decomposition 2). In other words pitesof the fact that certain particles decohere
and may behave classically, the subsystem comgogeadl of them retains its quantum nature.
We have also seen that, singe>1, all the particlesB, , considered independently, decohere.
Then, in this case not only all thg, but also all theB, decohere. This means that all the
particles of the closed systelmz(Ui“ilA) O (U,E‘zla() may become classical when considered
independently, although the whole systemcertainly does not decohere and, therefore, retain
its quantum character.

The fact that certain particles may be classicabwantum depending on how they are
considered sounds paradoxical in the context o&@oroach that explains decoherence as the
result of an interaction between open systems. Tpparent paradox is rooted in the
interpretation of the reduced state as a legitingatntum state. The open-system approach not
only leads to the problem of deciding where to eldte cut between system and environment,
but in a certain sense also disregards the welvknlbolism of quantum mechanics: a quantum
system in not the mere collection of its parts #reinteractions among them. In order to retain
its holistic nature, a quantum system has to bsidered as a whole. For this reason, in the next

section we introduce a description of decohererama the closed-system perspective
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5. Thestudy of expectation values as an alter native to the study of the statein EID

Although the EID approach is based on the studhefdiagonalization of the reduced state, it is
also possible to analyze the quantum-to-classiaakition at the level of expectation values. For
simplicity, we will consider the case of systemshwdiscrete energy spectrum; nevertheless, the
same considerations can be done in the continweses ¢

According to classical statistics, we can comphtedxpectation value of an observable
by summing the possible values of this observaldged with probability of being measured.
If those possible values arg,o;,....0n , Q ={0;,0,.....0y} is the space of possible events, @hd

is the probability to measureg , then the expectation value is

(O)=2qP (1.24)
However, the expectation values of quantum meckahave a different structure. The

expectation value of an observaltiein the statep is given by
(6). =>94, (1.25)
i

In this expression we can distinguish the term Itesufrom the diagonal components 6f and

£, and the term resulting from the non-diagonal congmts:

<O>ﬁ =ZO",0” +qujl (1.26)

i i#]
The diagonal element); =O; of the observabl® appear in the first sum, which could be
interpreted as values to be measured multiplietheyliagonal elementg; of the state operator,
that precisely correspond to the probabilitites= R assigned by the Born rule. That is,

(6) =X 0r+¥ qn (1.27)

i iZj
Then we obtain two sums. One of them includes tmgributions of the diagonal components of
O andp,

s°=> 0P (1.28)

The other sum includes the contributions of the-diagonal components @ and 2,
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="=%0,p (1.29)

i%]
It is not difficult to see thakP has the structure of a classical expectation vaDrethe
other hand,=NP does not have this structure since, for example,may be a non-positive
number. Thus, the terriN® is an obstacle to interpret the quantum expectatialue as a
classical expectation value. That fact is reasandlgicause otherwise there would be nothing
special about quantum mechanics. The Sl embodies the most curious characteristic of
quantum mechanics: the phenomenon of interferéfmethis reason, we call the terms°
‘interference terms’. As a consequence, any attampind a limit between quantum statistics
and classical statistics should include a procgssMtich the interference terms disappear in the

expectation values, i.e.,
>N .0 (1.30)
We will call this process ‘decoherence’. Thus ipassible build the following scheme:

<(5>[) =5 +3" ~ quantum statistics

!
decoherence

<6>[, s (1.31)

interpretation
<o>ﬁ = Z qP  ~ classical statistic

At this point it is convenient to make an obsematielated with the orthodox approach to
decoherence. The condition to obtain the limit leetw classical and quantum statistics is that,
after a certain timexNP =0. This is particularly true when the state operiatiagonal. In fact,

when all the observables of the system are coregicler

(i) if p is diagonal, then the interference terms of thgeetation values of all the

observables disappear, and
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(ii) if the interference terms of the expectation valokesll the observables disappear,

then p is diagonal.

This means that, when we consider all observalies study of decoherence can undertaken
from two equivalent points of view:
a. By studying the diagonalization of the state.

b. By studying the vanishing of the interference tefrom the expectation values.

5.1 Decoherence from the closed-system perspective

As emphasized by Omnés [35], decoherence is jpstrigcular case of the general problem of
irreversibility in quantum mechanics. The problefireeversibility can be roughly expressed in
the following terms. Since the quantum stg@{g) follows an unitary evolution, it cannot reach a
final equilibrium state fot — c . Therefore, if the non-unitary evolution towardgigibrium is

to be accounted for, a further element has to lweddo the unitary evolution. From the most
general viewpoint, this element consists in thettspg of the maximal information about the
system into a relevant part and an irrelevant panereas the irrelevant part is disregarded, the
relevant part is retained and its evolution magheafinal equilibrium situation.

This broadly expressed idea can be rephrased imatgps language. The maximal
information about the systebhis given by the spac@ of all its potentially possible observables.
By selecting a particular subsét, of this space, we restrict the maximal informatina
relevant part: the expectation vah(éﬁ@ﬁ of the observables belonging €@, J O express the
relevant information about the system. Of course,decision about which observables are to be
considered as relevant depends on the particulgyopas in each situation; but without this
restriction, irreversible evolutions cannot be diesel. A frequent choice cﬁ)R 00O, is the one
that splits the closed systdd) represented irft , into two open subsystenssandE, represented

in Hy andH, respectively, such that = SOE. In this case:

A

O, =0.01, (1.32)

where ¢ is the identity of+, 0 H, , and @S UOHs OH, is an observable of the syst&nSince

the identity [ is the only observable of the subsystErnonsidered in this case, it is clear that
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Og only provides information abo® Therefore, the expectation vaIL<£§R>p(t) give only an
account of the relevant part of the system. Itls® a&ssential to notice that, in principle, the
decision about which are the relevant observallesthose considered of interest, depends on
the purpose of each situation.

On the basis of the concepts presented in the aparagraph, now we can describe the
phenomenon of decoherence in general terms. Thishiag of the non-diagonal tern&\P of
the expectation value can be analyzed from theedlsystem perspective by means of the
expectation values. Given an initial stgfi®) and the relevant observables belongin@joll O,
decoherence takes place whetP(t) . 0. This does not mean that the state operator become
diagonal, but only that there are no interfererezens for all the relevant observables. In other
words, we can say that the initial stgi0) evolves asp(t) and, after a timep called
‘decoherence time’, the non-diagonal terms of tkgeetation values vanish.

This way of defining decoherence is different frtra orthodox one, but includes it. In fact,
when we select the relevant observables of the g OgOig, then requiring that the

interference terms disappear from the expectatadmevis equivalent to requiring that the reduced

state operator of the system is diagonal:

(i) when pg is diagonal, the interference terms disappear fthm expectation

values of all the relevant observables, and

(ii) if the interference terms disappear from the exaignt values of all the relevant

observables, thepg is diagonal.

Nevertheless, when we select the relevant obsavaitherwise, the equivalence is lost. The
closed-system approach leads to a more generakwark for decoherence. In particular, it
allows us to define the decoherence of groups séndables that do not have an associated state

operator.

5.2 The General Theoretical Framework for Decoheeen
In previous works we have analyzed the common cheniatics of the different approaches of

decoherence. The result of this analysis suggéwstspbssibility of formulating a general
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framework for decoherence, such that those paati@pproaches can all be framed in it (see [29],
[34], [36] and [37]). According to this general ineawork, which was developed in [36] and will
be completed in future papers, decoherence isgysrticular case of the general problem of
irreversibility in quantum mechanics. Once the B8akrole played by the selection of the
relevant observables is clearly understood, thex@menon of decoherence can be explained in

four general steps:
1. First step: The spaced, 0 O of the relevant observables is defined.

2. Second step: The expectation valuéﬁR>A , for any@R 0Oy, is obtained. This step can
PR
be formulated in two different but equivalent ways:

a. A coarse-grained statg,(t) is defined by

<OR>2>(t) - <OR>2>R(0 (1.33)
for any @R 00Oy, and its non-unitary evolution governed by a nrastgiation is
computed (this step is typical in EID).

b. <6R>[)(t) is computed and studied as the expectation veﬂt@Rdn the stateo(t) .

This is the generic case for other formalisms.

3. Third step: It is proved tha<(§R>Am :<(3R>A o reaches a final equilibrium vaIL<éA)R>A
b Pr p*
Then,

A

lim <6R>;m) = <oR>ﬁ* 00,00, (1.34)

t o0

This also means that the coarse-grained safe) evolves towards a final equilibrium

state:

Iim<(§R>ﬁR(t) :<6R>ﬁR* 00, 00, (1.35)

t o0

The characteristic time for these limitstjs the relaxation time.

4. Fourth step: We decompose the expectation values into thesickspart and the
interference part, and we study whether the intenfee terms disappear. In this case, it is

proved that
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o) -~ Yar 1.36
< >,3 Z t ( )
The characteristic time for this limit is thg, the decoherence time.

The limits of the third and the fourth steps mehat,t although the off-diagonal terms poft)
never vanish through the unitary evolution, theteysdecoheres from an observational point of
view, that is, from the viewpoint given by any nedat observable@R Uo,.

From this general perspective, the phenomenon sifugive interference, which produces
decoherence, is relative, because the off-diagemais of o(t) and pg(t) vanish only from the
viewpoint of the relevant observabIéA)ﬁ 00O, . The essential difference between EID and other
formalisms for decoherence is the selection ofrélevant observables (see [36] for details). In

fact, in EID approach the relevant observablestayse that can be expressed as:

A A

O, =0.01, (1.37)

where theCA)S are the observables of the system aA@dis the identity operator of the

environment. Then, eq. (5.10) reads:

N A

<6R>;,(t) :<OR>;;R(0 =<OS>;)S(0 where A5 (t) = Tr (A(1)) (1.38)

In the other formalisms, different restrictionslire set of observables are introduced.

5.3 The measurement problem from the closed systespective

When the measurement process is studied from timé g@ioview of the closed system, the system
to be measured and the measuring apparatus foraomalete quantum system, in which the
identification of subsystems is not necessary et there are observables of the f(ﬁgri] fM
linked to the degrees of freedom of interest (tf&esn of interest in EID). On the other hand,
there is an observabllé O IQM linked to the degrees of freedom of the pointer.ifSection 3.2,
the interaction introduces a correlation betweendigenstatefs,) of A and the eigenstat¢s)

of R:

[Wo)=2.618)000) ~ [W)=2.6]2)0]n) (1.39)
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Now the problem can be reinterpreted from the newegal framework for decoherence.
After measurement, and considering the interactwith the environment, the complete whole
system is in the superposition state

N
Pove =W su) (W sud = D_c¢ | a)d] r>D|£><£i‘D<rJ‘D<aj‘ (1.40)
ij=1

However, if we select the relevant observable efftdrm
~ ~ N ~
Oz = 10D r|r){r|Or ¢ (1.41)
i=1
the expectation value takes the following form

(), :iNlec.lzri (1.42)
where ther, are the possible values of pointéz]° <1 and i|o,|2 =1. Thus, we obtain a

expectation value with a classical structure. If ovdy considg; the expectation values of the
relevant observable, there is no way that an expmi reveals a difference between the
expectation values of the expression (5.19) anceMpectation values that would be obtained if
the state of the system were a true classical maxitherefore, the new approach of decoherence
can explain why, if you perform a series of measunets, the expectation values adopt a

classical structure. However, as the only staté weaconsider is the state of the whole closed

system, this case is free from the conceptualadilties of the EID approach.

5.4 The appearance of the classical world

As we have noticed above, the Correspondence Pkneistablishes that it should be
possible to recover the laws of classical mechainas the quantum laws. Historically, the aim
was to try to transform a diagonal quantum sjatato a stateo(p, q) of classical statistical
mechanics. In this sense, the new approach forh#éeence clearly shows that the quantum
character of a system never vanishes: closed systenlve always unitarily and, therefore, any
kind of limit is explicitly impossible. In particat, the non-unitary evolution of the reduced state
P is nothing else but a compact way of expressiegtithe evolution of the expectation values

of the relevant observables.
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However, the new approach is able to explain theeafance of the classical world as
presented to the experience. When we select cesgiaf relevant observablé®, 0O, and we
verify that for them there is decoherence, thengtientum-classical transition occurs at the level
of the expectation value@R), but not in the state. This means that the sydbeimaves
classically from an observatio:)]al point of viewa&3icality manifests itself or not, depending on

the relevant observables under consideration. [31].

5.5 The generalized spin-bath model from the cleystem perspective
Now we can analyze the spin-bath model from theedlesystem perspective. The closed system
U = Al B is associated with a stalma (t)> , Which is the only legitimate quantum state.

In Decomposition 1, the EID approach conceivess the open syste®, andB as the
environmentE . In our framework, this case corresponds to selgdhe relevant observables

éR of U of this form:
N
0x=0.0 IE=OAD(|:| |J (1.43)
i=1

When the expectation valug®g), . =57 +35"(t) of the observable®y in the statdy(t))
are computed (se eq.(4.4)), two cases can beglissimed (see [33] and [31]):

> In Case (a)N > M : Numerical simulations show thaf'® (t) - 0 very fast for
increasing time. This means that the observablesngby (5.20) decohere when

N> M.

> In Case (b),M >N or M=N : Numerical simulations show tha&" (t)
exhibits an oscillating behavior. This means tihat dbservables given by (5.20)

do not decoheres whevd > N or M = N..

In Decomposition 2 the EID approach conceivhg as the open systers, and

( !\il'lA)D B as the environmeri. In our framework, this case corresponds to selgdhe

relevant observableéR of U of this form:

Og=0s01.=0, D(UljlliJD[ - lkD (1.44)
= k=1

i=1
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When the expectation valug®g),, =* +Z™ (t) of the observable®y, in the statgu(t))

are computed (see eq.(4.4)), num)erical simulatirswy that, ifN >1, then="™ (t) - 0 very
fast for increasing time (see [33] and [31]). Theans that the observables given by (5.21)
decohere whem >1.

When we adopt this closed-system perspective,ritstout to be clear that there is no
essential criterion for identifying the “open systeand its “environment”. Some observable
decoheres and others not. As the only legitimatntiun system is a closed system, the problem
of splitting the whole system into system and emwinent, which challenges the EID approach,

simply disappears.

6. Conclusions

In this paper we have studied the properties ohapestems and their ontological status. We
have recalled that the ontological interpretatioh® proper and an improper mixture are very
different: althoughp and g, have similar mathematical structure, they do efgrto the same
physical entity. Then, we considered how the redustates of open systems are used in the
phenomenon of decoherence in two different cabesmeasurement process and those situations
where the whole closed system can be split intopam system of interest and its environment in
different ways. In the first case we have argued, thince the reduced state cannot be interpreted
as a proper mixture, decoherence does not solva¢asurement problem. In the second case we
showed that the lack of a criterion to identify tbpen system and its environment is a
manifestation of the relative nature of decoheremarel prevents us from conceiving the open
system as a physical entity of the same ontologitzdlis as that of the closed system. Finally, we
proposed a formalism designed to study the phenamoémelaxation and decoherence from a
closed-system perspective. Since this formalisns du# resort to reduced states, it avoids the

interpretive problems that threaten the EID appnoac
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