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Chapter 17 

A closed-system approach to decoherence 

Sebastian Fortin and Olimpia Lombardi 

17.1. Introduction 

Decoherence is a process that leads to spontaneous suppression of quantum interference. The 

orthodox explanation of the phenomenon is given by the environment-induced decoherence 

approach (see, e.g., Zurek 1982, 1993, 2003), according to which decoherence is a process 

resulting from the interaction of an open quantum system and its environment. By studying 

different physical models, it was proved that, when the environment has a huge number of 

degrees of freedom and for certain interactions, the reduced state of the open system rapidly 

diagonalizes in a well-defined preferred basis.  

The environment-induced approach has been extensively applied to many areas of 

physics—such as atomic physics, quantum optics and condensed matter—and has acquired a 

great importance in quantum computation, where the loss of coherence represents a major 

difficulty for the implementation of the information processing hardware that takes the 

advantage of superpositions. In the field of the foundations of physics, this approach has been 

conceived as the key ingredient to explain the emergence of classicality from the quantum 

world, since the preferred basis identifies the candidates for classical states (see, e.g., Elby 

1994, Healey 1995, Paz and Zurek 2002). It has been also considered a relevant element in 

different interpretations or approaches to quantum mechanics (for a survey, see Bacciagaluppi 

2016). 

The wide success of the environment-induced approach to decoherence took its 

difficulties to the background: only few works were devoted to analyze the assumptions and 

limitations of the orthodox approach. In resonance with this fact, the different approaches to 

decoherence arisen to face those difficulties were not taken into account with the care that 

they deserve. In this chapter we will show that there is a different perspective to understand 

decoherence, a closed-system approach, which not only solves or dissolves the problems of 

the orthodox approach, but also is in agreement with a top-down view of quantum mechanics 

that offers a new perspective for the traditional interpretive problems. 
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With this purpose, the chapter is organized as follows. In Section 2, we will begin by 

contrasting a bottom-up view versus a top-down view of quantum mechanics. In Section 3, 

the decoherence resulting from the interaction with the environment will be explained from a 

closed-system perspective. This will allow us to introduce, in Section 4, a general top-down, 

closed-system approach to decoherence, in the context of which environment-induced 

decoherence is a particular case. The paper closes with some final remarks. 

17.2. Bottom-up view versus top-down view of quantum mechanics 

The idea that nature consists of tiny elemental entities is deeply entrenched in our way of 

conceiving reality. It finds its roots in ancient Greece with atomism, and reappears in early 

Modern Age with the corpuscularist philosophy of Robert Boyle, which influenced many 

contemporary thinkers, including Newton. Since those days, it has taken different forms in 

chemistry, as in Dalton’s atomic theory, and in physics, from the kinetic theory of gases up to 

the standard model of particle physics. An epistemological strategy becomes natural in the 

light of this ontological picture: in order to understand nature, it is necessary to decompose it 

into simple systems. The knowledge about the whole is obtained by first studying the simple 

systems and then combining them through their interactions. Of course, there are cases in 

which this analytical strategy leads to descriptions that cannot be solved by formal means. 

This is the case of the three-body problem in classical mechanics. Nevertheless, even if there 

is no general closed form solution for the equations describing the many-body system, nobody 

doubts that the behavior of the whole system is determined by the components and its 

interactions; precisely for this reason, those problems are commonly solved by numerical 

methods. 

With the advent of quantum mechanics, this ontological picture goes into crisis. The 

phenomenon of entanglement, which is not a traditional physical interaction, is responsible of 

correlations that cannot be understood in classical terms. Therefore, in quantum mechanics, 

the assumption that the better knowledge about the whole is obtained by studying the simple 

systems and their interactions breaks down: here the state of the composite system is not 

uniquely determined by the states of the component subsystems. Nevertheless, in spite of this 

well-known fact, it is usual to begin with quantum systems, represented by Hilbert spaces, 

which become subsystems when they constitute a composite system. The implicit assumption 

is the atomistic assumption that there are certain elemental “particles” out of which 

everything is composed. This assumption has even made explicit by the atomic modal 
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interpretation of quantum mechanics, according to which there is in nature a fixed set of 

mutually disjoint atomic quantum systems that constitute the building blocks of all the other 

quantum systems (Bacciagaluppi and Dickson 1999). Good candidates for elemental systems 

are those represented by the irreducible representations of the symmetry group of the theory. 

From this viewpoint, when quantum systems interact, their states may become 

entangled: “By the interaction the two representatives [the quantum states] have become 

entangled” (Schrödinger 1935: 555, when coined the term ‘entangled’). In this case, it is said 

that the composite system is an entangled state, because it cannot be obtained as the tensor 

product of the component’s states. Entanglement is, therefore, the responsible for the 

correlations between the values of the observables of the two subsystems. 

This bottom-up ontological view leads to first consider two particles, say, a proton p 

and an electron e, represented by the Hilbert spaces p  and e  and in states p p   and 

e e  , respectively. Then, the state p e   of the hydrogen atom as a composite 

system is said to be entangled when p e     for any pair of states p  and e . This 

suggests that ‘entangled’ is a property that applies or no to the state of a composite system. 

However, the hydrogen atom can also be represented as constituted by two different 

subsystems, the center-of-mass system c c   and the relative system r r  , such that 

the state of the hydrogen atom c r   can be obtained as c r   : now the state of 

the composite system is not entangled. Although conceiving the hydrogen atom as composed 

by a proton and an electron seems more natural, there are group reasons that may lead to 

consider that the decomposition in center-of-mass system and relative system is more 

fundamental (see Ardenghi, Castagnino, and Lombardi 2009). This means that it cannot be 

said that a state of a composite system is entangled or not without first deciding which 

decomposition of the system will be considered. 

John Earman stresses this fact by saying:  

[A] state may be entangled with respect to one decomposition but not another; 

hence, unless there is some principled way to choose a decomposition, 

entanglement is a radically ambiguous notion. (Earman 2013: 303).  

As a consequence, it is necessary to single out the “correct” decomposition, and two positions 

can be distinguished (Earman 2013: 324-327): for the realist, there are certain subsystems that 

are ontologically “real” systems, whereas others are merely fictional; for the pragmatist, by 

contrast, the legitimate criterion for decomposition is empirical accessibility.  
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Although in certain passages of his article Earman talks of relativity, the stronger idea is 

that of “the rampant ambiguity” of the notion of entanglement (3012: 324, 325, 327). A 

notion is ambiguous if it has more that one meaning; so, in science and in philosophy 

ambiguity must be avoided. Therefore, if the notion of entanglement is ambiguous, the need 

for a clear-cut decision about how to split the composite system into subsystems seems 

completely reasonable. Nevertheless, a different view is possible: the notion of entanglement 

is not ambiguous; it is relative to the decomposition. The difference between ambiguity and 

relativity is not irrelevant at all: whereas the first is a conceptual problem to be solved, the 

second is a common feature of physical concepts. In fact, the concept of velocity is not 

ambiguous because relative to a reference frame. In the same sense, entanglement is a notion 

that acquires a precise meaning when relativized to a certain partition of the composite system 

and, as a consequence, no absolute criterion to select the right decomposition is needed. 

The relative conception of entanglement invites to reverse the general approach to 

quantum mechanics, from the traditional, classically-inspired bottom-up view, to a top-down 

view that endows the composite system with ontological priority. From this perspective, even 

if two systems exist independently before interaction, after the interaction their existence is 

only derivative, they become components of the composite system on a par with other 

subsystems resulting from any different decomposition. This view finds a significant affinity 

with the so called ‘quantum structure studies’, which deal with the different ways in which a 

quantum system can be decomposed into subsystems according to different tensor product 

structures (Harshman and Wickramasekara 2007a,b, Jekniæ-Dugiæ, Arsenijeviæ, and Dugiæ 

2013, Arsenijeviæ, Jekniæ-Dugiæ, and Dugiæ 2016, Harshman 2016). 

But the top-down view can be generalized a step further. Up to this point, the relation 

between “top” and “down” was described in terms of decomposing the composite system into 

its subsystems: the result of decomposition are subsystems, represented by Hilbert spaces; the 

tensor product of the Hilbert spaces of the subsystems is the Hilbert space of the composite 

system. But the top-down relationship can also be conceptualized in terms of algebras of 

observables, in resonance with the algebraic approach to quantum mechanics (Haag 1992). 

The whole system, represented by its algebra of observables, can be partitioned into different 

parts, identified by the subalgebras, even when these subalgebras do not correspond to 

subsystems represented by Hilbert spaces. This perspective, released from the subsystem-

dependent view anchored in tensor product structures, was proposed by Howard Barnum and 

his colleagues (2003), who proposed a generalization of the notion of entanglement to 
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partitions of algebras. This generalized notion becomes the usual notion of entanglement 

when the partition of the algebra of the whole system defines a decomposition of the system 

into subsystems (Barnum et al. 2004, Viola et al. 2005; Viola and Barnum 2010). A further 

characterization of pure entangled states can be given by appealing to the notion of restriction 

to a subalgebra is a natural algebraic generalization of the partial trace operation 

(Balachandran et al. 2013a,b). As a consequence, entanglement is not a relationship between 

systems or states, but between algebras of observables (Harshman and Ranade 2011). 

At present, this subsystem-independent view has been formally studied with great detail 

in many works and is still in development. But the point that we want to stress here is that this 

view suggests a top-down closed-system ontological picture, according to which the whole 

closed-system is the only autonomous entity: the sub-entities represented by subalgebras of 

the whole algebra of observables are only partial perspectives of the closed-system without 

autonomous existence. In the following section we will show that the phenomenon of 

decoherence can be explained from this top-down closed-system view, which, in turn, leads to 

a generalized approach to decoherence. 

17.3. Environment-induced decoherence from a closed-system perspective 

17.3.1. What are the systems that decohere? 

The environment-induced-decoherence program quickly became a new orthodoxy in the 

physicists’ community (Bub 1997). Despite this, the program is still threatened by a serious 

conceptual problem, which is precisely derived from its open-system.  

According to the orthodox view, the first step is to split the universe into the degrees of 

freedom which are of direct interest to the observer, “the system of interest”, and the 

remaining degrees of freedom usually referred to as “the environment”. In many models, 

distinguishing between the system of interest and its environment seems to be a simple 

matter. This is the case in many typical applications of the decoherence formalism to spin-

bath models, devoted to study the behavior of a particle immersed in a large “bath” of many 

particles (see, e.g., Zurek 1982). But the environment can also be internal, such as phonons or 

other inside excitations. This is typically the case when the formalism is applied to 

cosmology: the Universe is split into some degrees of freedom representing the system, and 

the remaining degrees of freedom that are supposed to be non-accessible and, therefore, play 

the role of the environment (see, e.g., Calzetta, H and Mazzitelli 2001). The possibility of 

internal environments leads to the need for a general criterion to distinguish between the 
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system and its environment. The problem consists in that the environment-induced-

decoherence program does not provide such a criterion. Wojciech Zurek early recognized this 

shortcoming of his proposal:  

one issue which has been often taken for granted is looming big, as a foundation 

of the whole decoherence program. It is the question of what are the “systems” 

which play such a crucial role in all the discussions of the emergent classicality. 

This issue was raised earlier, but the progress to date has been slow at best. 

Moreover, replacing “systems” with, say, “coarse grainings” does not seem to 

help at all, we have at least tangible evidence of the objectivity of the existence of 

systems, while coarse-grainings are completely “in the eye of the observer.” 

(Zurek 2000: 338; see also Zurek 1998).  

It is quite clear that the problem can be removed from a top-down closed-system perspective 

as that delineated in the previous section. 

In order to explain decoherence from a closed-system perspective, let us begin by 

recalling the definition of the concept of reduced state, because the environment-induced-

decoherence program decides to study the time behavior of the reduced state of the system of 

interest. The reduced state 1
r  of a system 1S , subsystem of a system S , is defined as the 

density operator by means of which the expectation values of all the observables of S  

belonging exclusively to 1S  can be computed. As Maximilian Schlosshauer emphasizes, 

strictly speaking, a reduced density operator is only “a calculational tool” for computing 

expectation values (Schlosshauer 2007: 48). This means that the description of decoherence in 

terms of the reduced state of the open system is conceptually equivalent to the description in 

terms of the expectation values of the observables of the open system but viewed from the 

perspective of the whole closed system. This is the path we will follow here. 

17.3.2. The perspective of the closed system 

Let us consider a closed system U  partitioned as U S E  , where S  is the open system of 

interest and E  is the environment. Let us call U  the space of observables of U , and S  and 

E  the spaces of observables of S  and E  respectively; then U S E  . If U  is the state 

of U , the reduced state of S  can be computed by means of the partial trace as S E UTr   . 

The environment-induced-decoherence formalism proves that, in many physically relevant 

models with environments of many degrees of freedom, the non-diagonal terms of the 

reduced state ( )S t  rapidly tend to vanish after an extremely short decoherence time Dt : 
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( ) ( )Dt t d
S St t           (17.1) 

where ( )d
S t  is diagonal in the preferred basis of S . The above evolution expresses the 

following evolution in the expectation values of the observables S SO   of the open system 

S : 

( ) ( )
D

d
S S

t t

S St t
O O

 
         (17.2) 

But, by definition, S  is the density operator by means of which the expectation values of all 

the observables S SO   in the state S  can be computed, that is: 

 
U S

US S E U US SO O I O O
 

          (17.3) 

where E EI   is the identity of the space of observables of the environment E . Then, it is 

clear that, even when the task is to describe only S , its reduced state is not indispensable. The 

physically relevant information about that subsystem can also be obtained by studying the 

state U  of the whole closed system U  and its relevant observables US S EO O I  . This 

means that there is no difference between describing the open system S  by means of its 

reduced state S  and describing it from a closed-system perspective by means of the 

expectation values of the relevant observables USO  of the closed composite system U  in the 

state U . Therefore, the evolution of eq. (17.3) can be expressed from the viewpoint of the 

closed system U  as: 

( ) ( )
D

d
U U

t t

US USt t
O O

 
         (17.4) 

where ( )d
U t  is not completely diagonal, but is diagonal in the preferred basis of S . 

17.3.3. The emergence of classicality 

The emergence of classicality through decoherence can strictly explained in terms of 

expectation values. The general idea is that the expectation value of an observable O  when 

the system is in the certain state   can be expressed as: 

ii ii ij ij

i i j

O O O




             (17.5) 

where the ii  and the iiO  are the diagonal components, and the ij  and the ijO  are the non-

diagonal components of   and O , respectively, in a certain basis. The second sum of eq. 

(17.5) represents the specifically quantum interference terms of the expectation value. If those 

terms vanished, the expectation value would adopt the structure of a classical expectation 

value, where the iiO  might be interpreted as possible values and the ii  might play the role of 

probabilities since positive numbers that are less than or equal to one and sum to one.  



 8 

In the light of this idea, the process of decoherence described by the evolution of eq. 

(17.2) leads to a classical-like expectation value, since ( )d
S t  is diagonal in the preferred basis 

of S : 

( ) ( )
( )D

d
S S

t t d
S S Sii Siit t

i

O O O t
 

        (17.6) 

where the Sii  and the SiiO  are the diagonal components of S  and SO , respectively, in the 

preferred basis. 

However, the same move cannot be applied to the evolution as expressed in eq. (17.4), 

because ( )d
U t  is not completely diagonal: it is diagonal only in the components 

corresponding to the preferred basis of S . Nevertheless, decoherence can be described from 

the closed-system perspective analogously to eq. (17.6) if a coarse-grained state ( )G t  of the 

closed system U  is defined as the operator such that: 

 
( ) ( )U G

US S E U US USt t
O O I O O

 
         (17.7) 

The density operator G  represents a coarse-grained state because it can be obtained as 

ρ Πρ ΠΠρG U U  . The projector Π  performs the following operation: 

 Πρ ρ δ ρ δU E U E S ETr           (17.8) 

where E E   is a normalized identity operator with coefficients /E  
     (see 

Fortin and Lombardi 2014). Now, the process of decoherence can be expressed as  

( ) ( )
D

d
U G

t t

US USt t
O O

 
         (17.9) 

where ( )d

G t  remains completely diagonal for all times Dt t . Now it can be said that the 

expectation value acquires a classical form also from the closed-system perspective since: 

( ) ( )
( )D

d
U G

t t d
US US USii Giit t

i

O O O t
 

        (17.10) 

where the d
Gii  and the USiiO  are the diagonal components of d

G  and USO , respectively, in the 

basis of decoherence. It is quite clear that G , although operating onto U , is not the 

quantum state of U : it is a coarse-grained state of the closed system that disregards certain 

information of its quantum state. However, G  supplies the same information about the open 

system S  as the reduced state S , but now from the viewpoint of the composite system S . In 

fact, if the degrees of freedom of the environment are traced off, the reduced state S  is 

obtained: 

ρ ρE G STr             (17.11) 
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Therefore, the reduced density operator S  can also be conceived as a kind of coarse-grained 

state of U , which disregards certain degrees of freedom considered as irrelevant. 

17.3.4. The applications of the closed-system approach 

The closed-system approach was presented from different perspectives, from the more 

conceptual (Castagnino, Laura, and Lombardi 2007, Lombardi, Fortin, and Castagnino 2012), 

to the more technical (Castagnino and Lombardi 2005, Castagnino and Fortin 2011, Fortin, 

Lombardi, and Castagnino 2014). It was also applied to a generalization of the spin-bath 

model (Castagnino, Fortin, and Lombardi 2010): a generalized spin-bath model of m n  spin-

1/2 particles, where the m  particles interact with each other and the n  particles also interact 

with each other, but the particles of the m  group do not interact with those of the n  group. 

The study of the model shows that there are definite conditions under which all the particles 

decohere, but neither the system composed of the m  group nor the system composed of the 

n  group decoheres. 

Once decoherence is understood from this new perspective, the defining-system 

problem, that is, the problem that there is no criterion to distinguish between the system and 

the environment, dissapears. In fact, the same closed system can be decomposed in many 

different ways. Since there is no privileged or “essential” decomposition, there is no need of 

an unequivocal criterion to decide where to place the cut between “the” system and “the” 

environment. If all the ways of selecting the system of interest are equally legitimate, 

decoherence is relative to the decomposition of the whole system (Lombardi, Fortin and 

Castagnino 2012, see also Lychkovskiy 2013). In other words, Zurek’s “looming big” 

problem is not a real threat to the environment-induced-decoherence approach: the supposed 

challenge dissolves once it is understood that decoherence is not a yes-or-no process but a 

relative phenomenon. 

17.4. The top-down approach to decoherence 

17.4.1. The formalism 

In the previous section, the closed-system approach to decoherence was still discussed in 

terms of the possibility of different tensor product structures: decoherence is relative to the 

particular decomposition of the composite system into subsystems. In this section, the 

generalization will be taken a step further from the algebraic viewpoint, by admitting that a 

closed system be partitioned into parts that do not constitute subsystems. 
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The starting point of the algebraic approach to quantum mechanics (Haag 1992; see also 

Bratteli and Robinson 1987) is the algebra of observables ( )A , which is the algebra 

spanned by a certain set  of observables O  represented by self-adjoint operators mapping a 

suitable Hilbert space  onto itself. When the algebra ( )A  identifies a quantum system, the 

quantum state   of the system is a prescription of the expectation values of the observables, 

and it is formalized as an expectation value functional from the observables to the unit 

interval, : ( ) [0,1]  A . A quantum state is said to be normal when there is an associate 

density operator   (with 0   and 1Tr   ) acting on the same Hilbert space  and such 

that ( ) ( )O Tr O    . The expectation value ( )O  gives the expected value if one measures 

the observable O when the system is in the state  , and the equation ‘ ( ) ( )O Tr O    ’ is 

essentially the Born rule extended to mixed states. 

The above algebraic notions are sufficient to formulate a top-down approach to 

decoherence that is independent of the tensor product structures of the Hilbert spaces. Let us 

consider a closed system U  identified by its algebra of observables ( )UA , and its state, 

represented by the density operator U . Now U  is not decomposed into subsystems, but a 

certain set of relevant observables R  is selected. It is interesting to notice that this move 

agrees with the approaches of the first period in the historical development in the general 

program of decoherence (see Fortin, Lombardi, and Castagnino 2014), when the aim was to 

understand how classical macroscopic properties emerge from the quantum microscopic 

evolution of a closed system. In this first period, the approach to equilibrium of quantum 

systems was studied through the behavior of certain observables that supposedly should 

behave classically, because accessible from the macroscopic viewpoint: “gross observables” 

(van Kampen 1954), “macroscopic observables of the apparatus” (Daneri, Loinger, and 

Prosperi 1962). In the present case, no restriction is imposed on the selection of the relevant 

observables: any set of observables can be selected. In any case, the algebra of the relevant 

observables, subalgebra of ( )UA , will be considered: ( ) ( )R UA A . 

Once the relevant observables are selected, the second step consists in computing the 

expectation values of the observables of the relevant algebra ( )RA : 

( )
( )

U
R R R t

O O


 A         (17.12) 

Then, a coarse-grained state ( )G t  is defined, such that: 

( ) ( )
( )

U G
R R R Rt t

O O O
 

  A        (17.13) 
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Now, the non-unitary evolution (governed by a master equation) of this expectation values is 

computed. Decoherence occurs when, after an extremely short decoherence time Dt , the 

expectation acquires a particular form: 

( )( ) ( )

D
d
GU G

t t

R R R tt t
O O O

 
         (17.14) 

where ( )d

G t  remains diagonal in the preferred basis for all times Dt t . This means that, 

although the off-diagonal terms of ( )U t  never vanish through its unitary evolution, it might 

be said that the system decoheres relatively to the observational point of view given by any 

observable belonging to the algebra of the relevant observables ( )RA . 

17.4.2. Classically-behaving observables 

Let us recall that decoherence has been considered the essential element to explain the 

emergence of classicality from the quantum world. But if decoherence is a relative 

phenomenon, classicality seems to be also relative: the fact that a system behaves classically 

or not cannot seems to depend on the way in which the observer decides to split the original 

closed system into relevant and irrelevant observables. This situation also challenges the 

orthodox open-system approach: in certain situations the fact that classicality emerges in an 

open system or not depends on what composite system that open subsystem is embedded in. 

More precisely, given two partitions of a closed system U , 1 1U S E   and 2 2U S E  , it 

may be the case that 1S  and 2S  decohere and behave classically, but 1 2S S  does not 

decohere and, so, classicality does not emerge in it (see the model in Castagnino, Fortin, and 

Lombardi 2010). This is a difficulty if one considers that the classical world is objective, 

independent of any observer’s decision: recall Zurek’s rejection of any solution of the 

defining-system problem that relies on “the eye of the observer” (Zurek 2000: 338). 

Despite what it seems, the top-down view of decoherence based on the algebraic 

approach is not affected by that difficulty. Given the closed system U , saying that it 

decoheres from the perspective of the relevant observables ( )R RO A  amounts to saying 

that, after a very short decoherence time, the interference terms of the expectation values of 

those observables tend to vanish with the unitary time-evolution of the state U  of U . But the 

vanishing of the interference terms of the expectation values of an observable is not a relative 

fact that depends on the observer: what depends on the observer is the selection of the 

relevant observables with the purpose to see if the closed system decoheres relative to it or not. 

When this fact is understood, it turns out to be clear that the all observables of the 

closed system U  can be considered one by one, their trivial algebras can be defined, and the 
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decoherence of the system U  relative to each one of those algebras can be studied. As the 

result, one is in a position to know the set of all the observables of U  that behave classically 

after a certain time, with neither ambiguity nor relativity. 

Another difficulty of the orthodox approach is that usually not stressed is that certain 

systems have a classical behavior with respect to certain observables and a quantum behavior 

with respect to others. For instance, a transistor behaves classically with respect to its center 

of mass when it falls off the table, but also has the quantum behavior characteristic of its 

specific use. When decoherence is conceived as a phenomenon that occurs or not to a 

quantum system, these common situations cannot be accounted for. By contrast, the top-down 

approach that relies on the subalgebras of observables can easily explain how a single system 

may combine classical and quantum behaviors of its different observables. 

In summary, according to the explanation of the emergence of the classical world given 

by the top-down algebraic approach just proposed, strictly speaking classicality is not a 

property of systems: thinking in systems that become classical in their whole leads to the 

above mentioned difficulties. The difficulties can be overcome once it is recognized that 

classicality is a property of observables. The emergent classical world is, then, the world 

described by the observables that behave classically with respect to their expectation values. 

17.5. Concluding remarks 

In this chapter we have proposed a closed-system approach to decoherence which, at first 

sight, seems to be a rival of the orthodox open-system approach. However, as we have argued, 

our proposal is compatible with the environment-induced-decoherence view, but generalizes 

it by including the treatment of situations that could not be studied with that orthodox view. 

As already explained, this closed-system approach is in resonance with a top-down view 

of quantum mechanics, usually based on the algebraic formalism, which is gaining ground in 

the physics community. It is interesting to notice also that understanding decoherence from 

the viewpoint of a closed system represented by its algebra of observables stands in close 

agreement with the modal-Hamiltonian interpretation of quantum mechanics (Lombardi and 

Castagnino 2008, Ardenghi, Castagnino and Lombardi 2009, Lombardi, Castagnino and 

Ardenghi 2010; see also Chapter 2 of this volume), also developed in our research group. This 

interpretation, also based on the algebraic approach, makes the rule that selects the definite-

valued observables to depend on the Hamiltonian of the closed system. Moreover, the 

definition of the system in terms of its algebra of observables leads to an ontological picture 
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where quantum systems are bundles of properties without individuality (da Costa, Lombardi 

and Lastiri 2013, da Costa and Lombardi 2014, Lombardi and Dieks 2016). In summary, the 

general view that endows closed systems with ontological priority has different but 

converging manifestations, in the light of which it deserves to be further developed. 
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