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1. Introduction 

The description of the classical limit of a quantum system is one of the most important issues 

in the foundations of quantum mechanics [1]. This problem has been formulated in different 

ways and explained by appealing to different interpretations [2]. The attempts to explain the 

classical limit go back to the correspondence principle, proposed by Niels Bohr. This 

principle establishes a connection between quantum observables and their classical 

counterparts when Planck’s constant is small enough in comparison with relevant quantities 

of the quantum system. In particular, this happens in the limit of large quantum numbers.  

Nowadays, the most important approach for describing the classical limit is based on 

the decoherence process [2]. The general idea of this approach is to explain the disappearance 

of the interference terms of quantum states appealing to the decoherence process induced by 

the environment. In this way, the coherence needed for most typical quantum phenomena is 

lost, and the classical features appear instead. 

As is well known, the set of observables associated to a quantum system forms a non- 

commutative algebra. This differs with the classical description of physical systems, in which 

observables are represented by functions over a phase space, which form a commutative 

algebra. This difference between quantum and classical systems has a correlate in terms of the 

elementary properties of physical systems. The elementary properties of quantum systems 

(also known as Yes-No tests or elementary experiments) are represented by orthogonal 

projectors acting on a Hilbert space. These projectors form a non-Boolean lattice (more 

specifically: a complete, atomic, atomistic, orthomodular lattice, satisfying the covering law 

[3]). Instead, the elementary properties of a classical system are the measurable subsets of the 

phase space, which form a Boolean lattice. 

The decoherence approach to the quantum-to-classical transition is based on the 

Schrödinger picture, in which states evolve over time, while observables and physical 
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properties are taken to be constants. As a result, the structure of quantum properties remains 

the same for all times: the quantum logic associated with the system does not change [4–7]. 

Therefore, in this approach it is not explained how the structure of quantum properties 

becomes classical. However, as it was remarked in [5], a reasonable condition for the 

existence of a classical limit is that the lattice of elementary properties becomes Boolean, or 

equivalently, that the algebra of observables becomes commutative [4, 6]. 

In this chapter, we present a logical approach to the classical limit, which describes 

how the logical structure of the elementary properties of a quantum system becomes classical 

when the classical limit is reached. In order to describe the evolution of logical structure, we 

consider the Heisenberg picture. According to this picture, observables and physical 

properties evolve in time, while states remain constant. In this way, we can consider the 

algebra of observables and the lattice of elementary properties as a dynamical object, 

depending on time, or other relevant parameters, such as action, temperature, particle number 

or energy.  

As we show below, this offers an interesting perspective for studying different 

physical processes. In particular, we discuss the possibility of connecting the approach of 

dynamical algebras developed in [4–7] with the description of the classical limit based in 

deformation of algebras. We also discuss the case of quantum statistical mechanics, where 

intermediate logics are interpreted as phase transitions. 

The chapter is organized as follows. In section II, We review the problem of the 

classical limit, as it was traditionally considered in the literature. In section III, we briefly 

summarize the logical structure of the elementary properties of physical systems, and we 

discuss the main difference between both logical structures. In Section IV, we introduce the 

logical approach to the classical limit, and we illustrate this approach with four different 

examples. Finally, in Section V we draw our conclusions. 

2. Different approaches to the classical limit 

One of the first explanations was proposed by Niels Bohr appealing to the correspondence 

principle. This principle establishes a connection between quantum observables and their 

classical counterparts by asserting that, if the ratio between the action of the system and the 

Planck’s constant is large enough, the classical limit should be recovered [2]. This implies 

that the quantum-to-classical transition should be attained in the limit of large quantum 
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numbers, such as large orbits, large energies, or a large number of particles. This approach is 

still important nowadays, in particular for studying quantum phenomena in the semiclassical 

level. A result that goes in line with the correspondence principle is the Ehrenfest theorem. 

 Paul Dirac proposed another explanation of the classical limit, appealing to the 

destructive interference among all possible paths [8]. In this way, he showed that the classical 

action path has the dominant contribution. This idea was subsequently elaborated by Richard 

Feynman in his thesis [9], opening the door to the celebrated path integral formulation of 

quantum mechanics. 

 All these approaches presented problems, which where extensively discussed in the 

literature. In particular, it is important to remark that Bohr himself did not considered the 

classical limit as an explanation of the emergence of classical reality. Quite on the contrary, 

Bohr believed that the classical realm exists independently of quantum theory and that cannot 

be derived from it. As it is well known, the discussion about the classical limit is subtle and 

problematic, and there is no real agreement on a solution [2]. 

 Nowadays, the most important approach for describing the classical limit is based on 

the environment induced decoherence. In this approach, it is considered that the quantum-to- 

classical transition is the result of the loss of coherence of the system due to the interaction 

with its environment [2]. Many physicists considered this proposal as the correct explanation 

of the classical limit (and also of the measurement process). However, some objection were 

raised, because the decoherence process would not be explaining how the logical structure of 

the elementary properties becomes a classical logic. 

Another important approach to the study of the classical limit is based in algebras de- 

formation [10]. In this formalism, quantum commutators (or equivalently, Moyal brackets) 

reduce to Poisson brackets, deforming the algebra involved.  

In what follows, we present an alternative approach to describe the classical limit. This 

is a logical approach, based on the evolution of the quantum observables, and it allows to 

describe the quantum-to-classical transition of the logical structure of the quantum systems. In 

the next section, we review some basic features about the lattice of the elementary properties 

of classical and quantum systems, which are relevant to our logical approach of the classical 

limit. 
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3. Logical structure of quantum mechanics 

In classical and quantum mechanics, the physical properties of a system are endowed with a 

lattice structure. These structures are different in the classical and quantum case, and they 

determine the logical structure of the whole physical system. In classical mechanics, physical 

systems are represented by the phase space and their properties are represented by subsets of 

the phase space [3]. In quantum mechanics, the physical systems are represented by Hilbert 

spaces and the properties are represented by closed vector subspaces or by their corresponding 

orthogonal projectors [11] (for a recent discussions about the logic approach to quantum 

mechanics see [12–16], and for applications to quantum histories see [17–23]). In both cases 

the set of all properties of a system has an orthocomplemented lattice structure. This implies 

that there is an order relation (≤) such that for all pair of properties exists the infimum (∧) and 

the supremum (∨), and all property p has a complement p^

 

with adequate properties. All 

orthocomplemented lattices satisfy certain inequalities, called distributive inequalities [3]:  

 

When the equalities hold, the lattice is distributive. An orthocomplemented and distributive 

lattice is called a Boolean lattice. The distributive property is an essential feature which 

differentiates classical and quantum lattices of properties.

 
In the classical case, the properties of the system are represented by the subsets of its 

phase space. The partial order relation is given by the inclusion (⊆) of sets. The infimum and 

the supremum are the intersection (∩) and the union (∪) of sets, respectively; and the 

complement of a property p is the complement of sets pc. The set of classical properties is not 

only an orthocomplemented lattice, but also a distributive one, i.e., classical properties satisfy 

the distributive equalities. Therefore, the logical structure of a classical system is Boolean. 

This structure is usually called classical logic. 

The quantum case is very different. The properties are represented by closed vector 

subspaces (or by their corresponding orthogonal projectors) [11]. Thus, the logical structure 

of quantum systems is given by the algebraic structure of closed vector subspaces. The set of 

all quantum properties is also an orthocomplemented lattice, and, as in the classical case, the 

partial order relation is given by the inclusion of subspaces and the infimum is given by the 

intersection of subspaces. However, the supremum and the complement of properties are 

aÙ(bÚc) ³ (aÙb)Ú(aÙc),

aÚ(bÙc) ³ (aÚb)Ù(aÚc)
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different from the classical ones. The supremum is given by the sum of subspaces and the 

complement of a property is its orthogonal subspace. The resulting lattice is non-distributive 

[3], and therefore, it is not Boolean. This structure is called quantum logic [24]  

The distributive inequalities are the main difference between classical and quantum 

logic. In the classic lattice, all properties satisfy the distributive equalities, but in the quantum  

lattice, only distributive inequalities hold in general. However, for some subsets of quantum 

properties the equalities hold. When a subset of properties satisfies the distributive equalities, 

they are called compatible properties. It can be proved that a sufficient and necessary 

condition for a set of properties to be compatible is that the projectors associated with the 

properties commute. Moreover, it can be shown that properties associated with different 

observables are compatible if the observables commute. If, on the contrary, two observables 

do not commute, some of the properties associated with them are not compatible. Therefore, 

by extension, commuting observables are called compatible observables.  

The differences between classical and quantum logic are of fundamental importance 

for the classical limit problem. If a quantum system undergoes a physical process such that its 

behavior becomes classic, then its logical structure of properties should undergo a transition 

from quantum logic to classical logic, i.e. its lattice structure should become distributive. 

However, the description of the classical limit of a quantum system usually focuses on the 

state of the system. The mathematical description of this process does not explain how the 

logical structure changes on time. Therefore, in these approaches it is not possible to describe 

how the structure of quantum properties becomes classical. In order to give an adequate 

approach to the classical limit, we need a description in which observables and physical 

properties evolve over time, changing the logical structure of the system. 

4. Logical quantum-to-classical transition 

A complete description of the quantum-to-classical transition should explain how the logical 

structure of the system changes from a quantum logic to a classical logic. In order to describe 

adequately this transition, we consider a quantum system with a general time evolution, and a 

time-dependent set of relevant observables, 𝒪(𝑡) = {�̂�𝑖(𝑡)}𝑖𝜖𝐼  (with I a set of indexes). 

Each set of relevant observables 𝒪(𝑡) generates an algebra of observables 𝒱(𝑡), and 

each algebra has associated an orthocomplemented lattice of properties ℒ𝒱(𝑡). We assume that 

in the initial set of observables 𝒪(0) there are some incompatible observables, and therefore 



 6 

its corresponding algebra of observables 𝒱(0) is non-commutative and the associated lattice 

of properties ℒ𝒱(0) is non-distributive. 

 For a quantum system with a decoherence time 𝑡𝐷, the quantum-to-classical transition 

is characterized by a process that transforms non-commutative observables into commutative 

ones, 

[�̂�𝑖(0), �̂�𝑗(0)] ≠ 0 → [�̂�𝑖(𝑡𝐷), �̂�𝑗(𝑡𝐷)] = 0, ∀𝑖, 𝑗 (1) 

After time 𝑡𝐷, the algebra of observables 𝒱(𝑡) becomes commutative, and the corresponding 

orthomodular lattice ℒ𝒱(𝑡) becomes non-distributive. The logical classical limit is expressed 

by the fact that, while ℒ𝒱(0) is a non-distributive lattice, ℒ𝒱(𝑡𝐷) is a Boolean one. In this way, 

we obtain an adequate description of the logical evolution of a quantum system.  

In what follows, we discuss the dynamics of the quantum algebra of observables and 

the logic structure of properties in some physical models. 

A. Quantum operations 

A quantum operation is a linear and completely positive map from the set of density operators 

into itself [25]. For each time t, we consider a quantum operation ℰ𝑡, which maps the initial 

state of the system �̂�0 to the state at time t, i.e., 

ℇ𝑡(�̂�0) = �̂�  

If we use the sum representation, we can express the quantum operation ℰ𝑡 as follows [25], 

ℇ𝑡(�̂�0) = ∑ �̂�𝜇(𝑡)�̂�0�̂�𝜇
†(𝑡)

𝜇

, 

where �̂�𝜇(𝑡) are the Kraus operators of ℰ𝑡.   

We define the Heisenberg representation of ℰ𝑡  as the operator ℰ̃𝑡  that evolves the 

observables from an initial time up to time t, i.e., ℰ̃𝑡(�̂�) = �̂�(𝑡) . The operator ℰ̃𝑡  must 

preserve the mean values of the observables for all times, 

𝑇𝑟(�̂�(𝑡)�̂�) = 𝑇𝑟 (∑ �̂�𝜇(𝑡)�̂�0�̂�𝜇
†(𝑡)

𝜇

�̂�) = 
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                                            = 𝑇𝑟 (�̂� ∑ �̂�𝜇
†(𝑡)�̂��̂�𝜇(𝑡)

𝜇

) = 𝑇𝑟 (�̂�0�̂�(𝑡)) 

Hence, we can express the operator ℰ̃𝑡 is the following 

ℰ̃𝑡(�̂�) = �̂�(𝑡) ∑ �̂�𝜇
†(𝑡)�̂��̂�𝜇(𝑡)

𝜇

 

Since �̂�  is self-adjoint, then ℰ̃𝑡(�̂�)  is also a self-adjoint operator. Therefore, ℰ̃𝑡  maps 

observables to observables. 

Once we have defined the temporal evolution of quantum operations, we can describe  

the logical classical limit of a quantum system as it was explained before. We illustrate the 

logical approach with a simple example: the amplitude damping channel [25]. 

 The amplitude damping channel is useful for describing the energy dissipation due to 

the environment effects. It is relevant for quantum information processing, because it is an 

adequate model for quantum noise. In particular, this model can be applied to the decay of an 

excited state of a two-level atom due to spontaneous emission of photons. If the atom is in the 

ground state, no photon is emitted, and the atom continues in the same state. But, if the atom 

is in the excited state, after an interval of time τ, there is a probability p that the state has 

decayed to the ground state and a photon has been emitted [25].  

The quantum operation of the amplitude damping channel can be expressed as follows 

ℇ𝑡(�̂�0) = �̂�0�̂�0�̂�0
† + �̂�1�̂�0�̂�1

†
 

where the Kraus operators are 

�̂�0 = (
1 0

0 √(1 − 𝑃)
) , �̂�1 = (

0 𝑝
0 0

). 

The associated quantum map ℰ̃𝑡  acting on the space of observables is given by ℰ̃𝑡(�̂�) =

�̂�0
†�̂�0�̂�0 + �̂�1

†�̂�0�̂�1. In matrix form, we have 

ℰ̃𝑡(�̂�) = (
𝑂00 √(1 − 𝑝)𝑛𝑂01

√1 − 𝑝𝑂10 𝑝𝑂00 + (1 − 𝑝)𝑂11

). 

Applying the amplitude damping channel n times, we obtain the map ℇ̃𝑛𝜏(�̂�), which has the 

form 
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ℇ̃𝑛𝜏(�̂�) = (
𝑂00 √(1 − 𝑝)𝑛𝑂01

√(1 − 𝑝)𝑛𝑂10 (1 − 𝑝)𝑛𝑂11 + 𝑂00[1 − (1 − 𝑝)𝑛]
). 

If t → ∞, all observables become proportional to the identity. This implies that the algebra of 

observables becomes trivially commutative, and its corresponding lattice of properties 

becomes a classical logic. 

B. Rigged Hilbert space  

One of the most investigated fields in quantum foundations is the quantization problem, 

which consists in obtaining quantum observables from their classical counterpart. Much less 

considered has been the problem of de-quantization: the transition form quantum to classical 

observables. It was shown in [26] that de-quantization may require two steps, one is a type of 

decoherence and the other is the notion of macroscopicity, which is implemented by the limit 

ℏ → 0. Along the present section, we intend to give a brief account of another notion of de-

quantization in presence of unstable quantum systems or resonances. 

In a previous paper [6], we argued that an essential characteristic of the quantum-to- 

classical transition should be the transition from a non-commutative algebra of observables to 

ia commutative one, when 𝑡 → ∞. This can be rigorously formulated for quantum unstable 

systems, provided we considered the linear space spanned by the resonance state vectors, also 

called Gamow vectors.  

Resonances are usually characterized as poles of some analytic continuations of a 

reduced resolvent or a scattering matrix. Both formulations are not always equivalent: one 

may construct models for which the poles in one of these two formulations are not poles in 

the other. In the energy representation, these poles appear in complex conjugate pairs and 

have the form 𝐸𝑅 ± 𝑖Γ/2, where 𝐸𝑅is the resonance energy and Γ is related with the inverse of 

the mean life [27]. Notice that Γ must be always positive. 

From the observational point of view, single resonances show an exponential decay, 

provided that the time intervals are not too short and not very large either [28]. However, 

these deviations are very difficult to be observed. Therefore, most experiments with 

resonances show exponential decays for practically all values of time [29, 30].  

Now, pure stable states have a mathematical representation in terms of vector states. 

The difference between a stable state and a resonance one is just that the value of the 

parameter Γ is equal to zero for stable states. Then, one is tempted to introduce a definition of 
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resonance states in such a way that, if the resonance poles are 𝐸𝑅 ± 𝑖Γ/2, we have either 

𝐻|𝜓𝐷⟩ = (𝐸𝑅 − 𝑖Γ/2)|𝜓𝐷⟩ or 𝐻|𝜓𝐺⟩ = (𝐸𝑅 + 𝑖Γ/2)|𝜓𝐺⟩ [31]. Here 𝐻 = 𝐻0 + 𝑉 is the total 

Hamiltonian which produces the resonance phenomenon. Note that, in the first case, formal 

time evolution gives 𝑒−𝑖𝑡𝐻 |𝜓𝐷⟩ = 𝑒−𝑖𝐸𝑅𝑡𝑒−𝑡Γ/2|𝜓𝐷⟩, which is an exponential decay for 𝑡 →

∞. On the other hand, a similar formal time evolution gives 𝑒−𝑖𝑡𝐻 |𝜓𝐺⟩ = 𝑒−𝑖𝐸𝑅𝑡𝑒𝑡Γ/2|𝜓𝐷⟩, 

which decays exponentially as 𝑡 → −∞ . Vector states |𝜓𝐷⟩  and |𝜓𝐺⟩  as known as the 

decaying and growing Gamow vectors, respectively. 

As a matter of fact, both vectors |𝜓𝐷⟩ and |𝜓𝐺⟩ (where the D stands for decay and the 

G stands for growing) are equally suitable for a vector state for the considered resonance. 

Nevertheless, the choice |𝜓𝐷⟩ seems more natural as the time flows in the positive direction. 

The point is that both are time reversal of each other and represent the same physical 

phenomenon. Note that, both vector states describe the part of the resonance that behaves 

exponentially with time. Deviations add a background term [32], but here we can consider as 

negligible. 

However, the previous considerations have an important mathematical flaw: Gamow 

vectors are eigenvectors of the total Hamiltonain H with complex eigenvalues. This is not 

compatible with the assumption that H is self adjoint. However, this property is essential if we 

want that the Gamow vectors have an exponential behavior with time. There are two possible 

remedies for this problem: 

1. Non-Hermitian Hamiltonian 

This is the approach known as dilation analytic potentials [33]. This gives normalizable 

Gamow vectors belonging to the Hilbert space on which the total Hamiltonian H is 

defined as a self-adjoint operator. However, these Gamow vectors depend on a non-

physical parameter, precisely the parameter that provides the dilation, which is arbitrary at 

some extent [34]. There are other possibilities for using non-Hermitian Hamiltonians (see 

for instance [35]). 

2. Rigged Hilbert space 

The second possibility is the extension of the Hilbert space to a rigged Hilbert space 

(RHS). A RHS is a tern of three spaces Φ ⊂ ℋ ⊂ Φ×
, with the following properties: i.) 
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ℋ is an infinite dimensional separable Hilbert space1; ii) Φ is a dense subspace2 with a 

topology such that the Φ has less convergent sequences than what it would have with the 

topology inherited from ℋ; iii) Φ× is the vector space of all continuous linear mappings 

from Φ to the space ℂ of complex numbers. RHS also serves for a rigorous presentation of 

the Dirac formulation of quantum mechanics [36–41], and it has some other applications 

concerning group representations and special functions [42–44].  

Then, if ℋ is the Hilbert space where the total Hamiltonian 𝐻 = 𝐻0 + 𝑉 acts on, we 

may construct two RHS, Φ± ⊂ ℋ ⊂ Φ×
, with the property that |𝜓𝑗

𝐷⟩ ∈ Φ+
× and |𝜓𝑗

𝐺⟩ ∈ Φ−
×, 

where the index j stands for the number of resonances in the system with resonance complex 

energies 𝐸𝑅𝑗
± 𝑖𝛤𝑗/2. Decaying and growing Gamow vectors have the desired time behavior, 

a fact that can be rigorously proven [32, 45] 

A non-relativistic quantum system may have infinitely many resonances. This means 

that only a finite number of resonances may be considered. We recall that resonances are 

determined by the poles of a complex analytic function which are always isolated points in the 

complex plane. For large values of 𝐸𝑅 , the energies go to the relativistic regime, so that we 

have to discard this possibility. But then, resonances with large imaginary part are not 

observable, since their mean lifetimes are extremely small. This means that only a finite 

number of resonances may be considered within the non-relativistic regime for a given 

unstable quantum system. 

In addition, if we focus our attention in the resonance behavior only, we may consider 

the space spanned by the Gamow vectors. For decaying (growing) Gamow vectors, this is a 

finite dimensional subspace of Φ+
×(Φ−

×). Let us assume that our system has N resonances with 

𝑧𝑗 ≔ 𝐸𝑅𝑗
+ 𝑖Γ𝑗/2 and 𝑧𝑗

∗ being its complex conjugate. We may consider the 2N dimensional 

space ℋ𝐺spanned by all Gamow vectors 

{|𝜓1
𝐷⟩,|𝜓2

𝐷⟩, |𝜓1
𝐺⟩, |𝜓2

𝐺⟩, … , |𝜓𝑁
𝐷⟩,|𝜓𝑁

𝐺 ⟩} (2) 

We define on ℋ𝐺a pseudometrics that on the vectors of the basis (2) is 

                                                
1 A Hilbert space is separable if any orthonormal basis is countable. 
2 A subspace of ℋ is dense if any neighborhood of any vector in ℋ contains vectors in 

Φ. 
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(𝜓𝑖
𝐷|𝜓𝑗

𝐷) = (𝜓𝑖
𝐺|𝜓𝑗

𝐷) = 0,          (𝜓𝑖
𝐷|𝜓𝑗

𝐺) = (𝜓𝑖
𝐺|𝜓𝑗

𝐷) = 𝛿𝑖𝑗 , (3) 

where 𝛿𝑖𝑗  is the Kronecker delta. We extend this pseudometrics to the whole of ℋ𝐺  by 

linearity. 

 We may write the restriction of the total Hamiltonian H to ℋ𝐺  as [46] 

𝐻 = ∑ 𝑧𝑗|𝜓𝑖
𝐷)(𝜓𝑗

𝐺|

𝑁

𝑗=1

+ ∑ 𝑧𝑗
∗|𝜓𝑖

𝐺)(𝜓𝑗
𝐷|

𝑁

𝑗=1

 

(4) 

Note that H in (4) is formally Hermitian. Using the pseudometrics (3), we find that  

𝐻𝑛 = ∑ 𝑧𝑗
𝑛|𝜓𝑖

𝐷)(𝜓𝑗
𝐺|

𝑁

𝑗=1

+ ∑(𝑧𝑗
∗)𝑛|𝜓𝑖

𝐺)(𝜓𝑗
𝐷|

𝑁

𝑗=1

 

(5) 

This suggests a possible choice for the time evolution operator on ℋ𝐺  as  

𝑈(𝑡) ≔ 𝑒−𝑖𝑡𝐻 = ∑{𝑒−𝑖𝑡𝑧𝑗|𝜓𝑖
𝐷)(𝜓𝑗

𝐺|

𝑁

𝑗=1

+ 𝑒−𝑖𝑡𝑧𝑗
∗
|𝜓𝑖

𝐺)(𝜓𝑗
𝐷|} 

(6) 

The identity I on ℋ𝐺  in this representation is given by 

𝐼 ≔ ∑{|𝜓𝑗
𝐷)(𝜓𝑗

𝐺|

𝑁

𝑗=1

+ |𝜓𝑗
𝐺)(𝜓𝑗

𝐷|} 

(7) 

Using the pseudometrics, we obtain that 𝐼|𝜓𝑗
𝐷) = |𝜓𝑗

𝐷)  and  𝐼|𝜓𝑗
𝐺) = |𝜓𝑗

𝐺) , 𝑗 =

 1, . . . , 𝑁, so that this is indeed the identity. With this identity, one possible choice of the 

inverse of 𝑈(𝑡) is  

𝑈−1(𝑡) = 𝑈(−𝑡) = ∑{𝑒𝑖𝑡𝑧𝑗|𝜓𝑖
𝐷)(𝜓𝑗

𝐺|

𝑁

𝑗=1

+ 𝑒𝑖𝑡𝑧𝑗
∗
|𝜓𝑖

𝐺)(𝜓𝑗
𝐷|} 

(8) 

Then, we obtain 𝑈(𝑡)𝑈−1(𝑡)  =  𝐼 as we would expect. 

 The time evolution for any observable 𝑂 =  𝑂(0) on ℋ𝐺  should be defined as 

𝑂(𝑡) ≔ 𝑈(−𝑡)𝑂𝑈(𝑡) (9) 

This 𝑂(𝑡) is well defined for al values of time t. However, with definitions (6) and (8), 𝑂(𝑡) 

diverges as 𝑡 →  ±∞. This result is not satisfactory. This is the reason why we have chosen 

instead, as evolution operator on ℋ𝐺:  
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𝑈(𝑡) ≔ ∑{𝑒−𝑖𝑡𝑧𝑗|𝜓𝑖
𝐷)(𝜓𝑗

𝐺|

𝑁

𝑗=1

+ 𝑒𝑖𝑡𝑧𝑗
∗
|𝜓𝑖

𝐺)(𝜓𝑗
𝐷|} 

(10) 

which is Hermitian. In this case, we have that 𝑈(𝑡)𝑈†(𝑡)  =  𝑒−𝑡Γ𝐼. Nevertheless, we should  

keep the definition of O at time t as 𝑂(𝑡) ∶=  𝑈†(𝑡)𝑂𝑈(𝑡). In this case, we have the following  

relationship for the commutator of two observables at time t: 

[𝑂1(𝑡), 𝑂2(𝑡)] = ∑ 𝑒−2𝑡Γ𝑗{𝛼𝑗(𝑡)|𝜓𝑗
𝐷)(𝜓𝑗

𝐺|

𝑁

𝑗=1

+ 𝛽𝑗(𝑡)|𝜓𝑗
𝐺)(𝜓𝑗

𝐷|} 

(11) 

where 𝛼𝑗(𝑡) and 𝛽𝑗(𝑡), 𝑖 =  1,2, . . . , 𝑁, are constants for which the dependence on t is just a 

phase of the form 𝑒
±2𝑖𝑡𝐸𝑅𝑗 . Since all 𝛤𝑗  >  0, one concludes that, in the limit 𝑡 → ∞, the 

commutator (11) vanishes. 

 In conclusion, for quantum decaying systems and with a correct choice of the form of 

our operators, commutators vanish for long values of time. 

C. Decoherence and irreversible process 

Many attempts have been made to recover the laws of classic mechanics through some 

classical limit. The more relevant approaches include the quantum decoherence process, 

which is responsible for the disappearance of the interference terms of quantum states, 

inadmissible for a classical description. In addition, decoherence provides a rule for choosing 

the candidates for classic states. 

As it is indicated in [47], three periods can be identified in the development of the 

general program of decoherence [48]. In the first period, it was studied the arrival to the 

equilibrium of irreversible systems. During this period, authors such as van Kampen, van 

Hove, Daneri, et al. developed a formalism that was not successful for explaining the 

decoherence phenomenon, but it established the basis for its future development. The main 

problem of this period was that too long decoherence times were found, in comparison with 

the experimental ones. 

In the second period, the decoherence in open systems was studied. The main 

characters of this period were Zeh and Zurek [49–52]. The decoherence process is described 

as interaction process between an open quantum system and its environment. This process, 

called Environment-Induced Decoherence (EID), determines a privileged basis (usually called 
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pointer basis or moving decoherence basis) which defines the observables that acquires clas- 

sic features. Nowadays, this is the orthodox position of the subject [7]. The decoherence times 

in this period were much smaller, solving the problem of the first period. 

In the third period, the study of the arrival to equilibrium of closed systems was 

studied (G. Ford and R. O’Connel [53], G. Casati, B. Chirikov and T. Prosen [54–56], R. 

Gambini, J. Pulin and R. A. Porto [57–59], and M. Frasca [60]). Within this period, a new 

approach of the decoherence was presented by Castagnino et al. According to this approach, 

the decoherence process can occur in closed systems, and it depends on the choice of some 

observables with some particular physical relevance (for example, the van Hove observables). 

This process, called Self-Induced Decoherence (SID), also determines which is the privileged 

basis, called final decoherence basis, that defines which observables acquire classic features. 

In some works [47, 61, 62], the common characteristics of the different approaches to 

decoherence were summarized, and a general framework for decoherence was proposed. 

According to the general framework, decoherence is just a particular case of the general 

problem of irreversibility in quantum mechanics. Since the quantum state follows an unitary 

evolution, it cannot reach a final equilibrium state when time goes to infinity. Therefore, 

another element must be considered in such a way that a non-unitary evolution is obtained. 

The way to introduce this non-unitary evolution has to include the splitting of the whole space 

of observables 𝒪  into a relevant subspace 𝒪𝑅  ⊂  𝒪  and an irrelevant subspace. Once the 

essential role played by the selection of the relevant observables is clearly understood, the 

phenomenon of decoherence can be explained in four general steps (we reproduce the four 

steps from paper [62]): 

 First step: 

The space of relevant observables 𝒪𝑅  is defined. For example, in the EID 

approach the relevant observables are 𝑂𝑅 = 𝑂𝑆⨂𝐼𝐸, where 𝑂𝑆 is an arbitrary 

observable of the system 𝑆 and 𝐼𝐸  is the unit operator of the environment 𝐸. 

SID relevant observables were defined in [62].  

 Second step: 

The expectation value ⟨𝑂𝑅⟩𝜌(𝑡), for any 𝑂𝑅 ∈ 𝒪𝑅 , is obtained. This step can be  

formulated in two different but equivalent ways: 
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i. ⟨𝑂𝑅⟩𝜌(𝑡) , is obtained as the expectation value of 𝑂𝑅  in the unitarily 

evolving state   𝜌(𝑡) (this step is typical of SID) and its evolution is 

studied.    

ii. A coarse-grained state 𝜌𝑅(𝑡) is defined as 

⟨𝑂𝑅⟩𝜌(𝑡) = ⟨𝑂𝑅⟩𝜌𝑅(𝑡) (12) 

for any 𝑂𝑅 ∈ 𝒪, and its non-unitary evolution, governed by a master 

equation,   is obtained (this step is typical of EID).    

 

 Third step: 

It is proved that ⟨𝑂𝑅⟩𝜌(𝑡) = ⟨𝑂𝑅⟩𝜌𝑅(𝑡) reaches a final equilibrium value ⟨𝑂𝑅⟩𝜌∗: 

lim
𝑡→∞

⟨𝑂𝑅⟩𝜌(𝑡) = lim
𝑡→∞

⟨𝑂𝑅⟩𝜌𝑅(𝑡) = ⟨𝑂𝑅⟩𝜌∗,     ∀𝑂𝑅 ∈ 𝒪𝑅 (13) 

This also means that the coarse-grained state 𝜌𝑅(𝑡) evolves, with a non-unitary 

evolution, towards a final equilibrium state:  

lim
𝑡→∞

⟨𝑂𝑅⟩𝜌𝑅(𝑡) = ⟨𝑂𝑅⟩𝜌∗,     ∀𝑂𝑅 ∈ 𝒪𝑅  (14) 

 Fourth step: 

The moving preferred basis {|𝑗(𝑡)⟩̃} is defined. This basis is the eigenbasis of a 

state 𝜌𝑃(𝑡) such that  

lim
𝑡→∞

⟨𝑂𝑅⟩(𝜌𝑅(𝑡)−𝜌𝑃(𝑡)) = 0,     ∀𝑂𝑅 ∈ 𝒪𝑅 (15) 

The characteristic time for this limit is the decoherence time 𝑡𝐷. 

All the approaches to decoherence have one thing in common, they all need to introduce a 

non-unitary evolution. From a general point of view, it is possible to approximate the 

evolution of the system through an effective non-Hermitian Hamiltonian 𝐻𝑒𝑓𝑓 . It can be 

proved that the evolution of the mean value is given by [63] 

⟨𝑂𝑅⟩𝜌(𝑡) ≅ ⟨𝑂𝑅⟩𝜌∗ + ∑ 𝐶𝑖𝑒−𝛾𝑖𝑡

𝑖
,  

where 𝛾𝑖
−1 are the characteristic times of the system, which are associated with the complex i  

eigenvalues of the effective Hamiltonian. Then, it is easy to see that the commutator between 

two relevant observables is [5]: 

〈[𝑂𝑅, 𝑂´𝑅]〉𝜌(𝑡) → 0.  
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This means that, when 𝑡 →  ∞, the expectation value of the commutator between 𝑂𝑅 and 𝑂´𝑅 

becomes zero. Therefore, the Heisenberg uncertainty relation becomes undetectable from the 

experimental viewpoint. 

D. Quantum statistics and the classical limit 

In this section we show that the dynamics of logics can be related to other parameters, 

different from time. In quantum statistics, the mean number of particles occupying a quantum 

state is given by the formula 

�̅�𝑠 =
1

exp(𝛼 + 𝛽𝜖𝑠) ± 1
= 𝑁 

(16) 

in which the ”+” sign corresponds to Fermi-Dirac statistics and the ”−” to Bose-Einsten. The 

parameter 𝛼 is related to particle number according to the condition 

∑ �̅�𝑠

𝑠

= ∑
1

exp(𝛼 + 𝛽𝜖𝑠) ± 1
𝑠

= 𝑁 
(17) 

being 𝑁, the total particle number. The partition function reads 

ln(𝑍) = 𝛼𝑁 ± ∑ ln(1 ± 𝑒𝑥𝑝(−𝛼 − 𝛽𝜖𝑠))

𝑠

 
(18) 

When the concentration of the gas is made sufficiently low, quantum effects should be 

important. This limit corresponds to small 𝑁 . Equivalently, we should have �̅�𝑠 ≪  1  (or 

𝑒𝑥𝑝 (𝛼 +  𝛽𝜖𝑠)  ≫  1). 

If we now assume that the particle number is fixed, and increase the temperature (this 

is equivalent to 𝛽 →  0), we obtain that the most important terms are those satisfying 𝛽𝜖𝑠  ≪

 𝛼. Under these conditions, we obtain that 𝑒𝑥𝑝 (𝛼 +  𝛽𝜖𝑠)  ≫  1. Or equivalently, that �̅�𝑠 ≪

 1. This is the condition for the classical limit. In other words, the condition under which 

quantum effects are negligible. In this limit, and for both cases, Fermi-Dirac and Bose-

Einstein, we obtain  

�̅�𝑠 = exp(−𝛼 − 𝛽𝜖𝑠). (19) 

The above constraint reduces to  

∑ exp(−𝛼 − 𝛽𝜖𝑠)

𝑠

= 𝑁; (20) 
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then, we can express  

�̅�𝑠 = 𝑁
exp(−𝛼 − 𝛽𝜖𝑠)

∑ exp(𝛽𝜖𝑠)𝑠
. 

(21) 

Thus, at sufficiently low density or high temperature, we obtain the Maxwell-Boltzmann 

distribution, which is a signature of classicality. But the fact that we can attain the classical 

limit by adjusting the temperature, suggests that, time is no the only parameter that allows us 

to observe a dynamical logics phenomenon. The algebraic aspects of this transition will be 

discussed in a future work. But we can advance some points here.  

First, some interpretations of quantum mechanics suggest that, when the classical limit 

is obtained, irreversible process should be observed. Under this perspective, This can be 

related to the mathematical formalism of Gamow vectors. 

Our second remark is that the dynamics of logics approach can be useful to interpret 

the quantization deformation formalism under a new light. Indeed, some authors [10] have 

proposed to study the classical limit and the quantization of a given theory by appealing to the 

formalism of deformation quantization. In this approach one starts with a classical 

(commutative) algebra of observables 𝒜0, endowed wit a pointwise product · and a Poisson 

bracket { , }. Then, a family of algebras 𝒜ℎ is introduced, indexed with a parameter ℎ ≥  0. 

The parameter ℎ is intended to represent a dimensionless combination of some characteristic 

parameters associated to the system, and the Planck’s constant. An associative product ⋆ℎ is 

introduced in the indexed algebras, and it is required that (see [10] for details): 

lim
ℎ→0

𝑖

ℎ
[𝑓, 𝑔]−

ℎ = {𝑓, 𝑔} 
(22) 

and 

1

2
lim
ℎ→0

[𝑓, 𝑔]+
ℎ = 𝑓 · 𝑔. 

(23) 

The examples shown in this section suggest that the parameters involved in the 

classical limiting process could be time, temperature, particle number, etc. Thus our 

dynamical logics approach could be connected in a natural way to that based in the 

deformation of algebras. We will discuss this possibility elsewhere. 
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5. Conclusions 

In this chapter, we have presented a logical approach for the description of the 

quantum- to-classical transition of physical systems. This approach consists in describing the 

system as a collection of observables which evolve over time, according to the Heisenberg 

picture but with a non-unitary evolution. 

In turn, the algebra of observables determines a lattice of elementary physical 

properties with a logical structure. In the classical case, the properties have classical logic 

structure, and in the quantum case, they have a quantum logic structure. The time evolution of 

the algebra induces a time evolution of the lattice of properties. Therefore, in this approach, 

the classical limit is attained when the final structure of properties becomes a classical logic, 

or equivalently, when the resulting algebra of observables becomes commutative.  

We have shown some examples in which this logical transition occurs, among them, 

quantum channels, unstable physical processes and models of self-induced decoherence. We 

have also shown that our formulation has a natural application in quantum statistical 

mechanics, where the temperature parameter or the particle number can play the role of the 

time in reaching the classical limit. In other words, the classical limit of quantum statistical 

systems indicates that, time is not the only parameter that may show a transition from 

quantum to classical logic. Furthermore, we have connected our approach with the formalism 

of quantization deformation. In future works, we will develop these ideas in more detail.  
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